sorted plots
This commit is contained in:
parent
41ffe7ecce
commit
96933c0532
@ -180,8 +180,21 @@ def main(datapath: str) -> None:
|
||||
|
||||
# set time window # <------------------------ Iterate through windows here
|
||||
window_duration = 5 * data.samplerate # 5 seconds window
|
||||
window_overlap = 0.5 * data.samplerate # 30 seconds overlap
|
||||
raw_time = np.arange(data.shape[0])
|
||||
window_overlap = 0.5 * data.samplerate # 0.5 seconds overlap
|
||||
|
||||
# check if window duration is even
|
||||
if window_duration % 2 == 0:
|
||||
window_duration = int(window_duration)
|
||||
else:
|
||||
raise ValueError("Window duration must be even.")
|
||||
|
||||
# check if window ovelap is even
|
||||
if window_overlap % 2 == 0:
|
||||
window_overlap = int(window_overlap)
|
||||
else:
|
||||
raise ValueError("Window overlap must be even.")
|
||||
|
||||
raw_time = np.arange(data.shape[0]) / data.samplerate
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
||||
dt = 60 * data.samplerate
|
||||
|
||||
@ -202,9 +215,6 @@ def main(datapath: str) -> None:
|
||||
# start_index = t0 * data.samplerate
|
||||
# stop_index = (t0 + dt) * data.samplerate
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
2,
|
||||
@ -217,6 +227,10 @@ def main(datapath: str) -> None:
|
||||
# iterate through all fish
|
||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
|
||||
# get indices for time array in time window
|
||||
window_index = np.arange(len(idx))[
|
||||
(ident == track_id) & (time[idx] >= t0) & (
|
||||
@ -226,7 +240,7 @@ def main(datapath: str) -> None:
|
||||
# get tracked frequencies and their times
|
||||
freq_temp = freq[window_index]
|
||||
powers_temp = powers[window_index, :]
|
||||
# time_temp = time[idx[window_index]]
|
||||
time_temp = time[idx[window_index]]
|
||||
track_samplerate = np.mean(1 / np.diff(time))
|
||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||
|
||||
@ -236,13 +250,9 @@ def main(datapath: str) -> None:
|
||||
|
||||
# get best electrode
|
||||
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
||||
# electrode = best_electrodes[0]
|
||||
|
||||
# <------------------------------------------ Iterate through electrodes
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||
# here
|
||||
@ -263,62 +273,43 @@ def main(datapath: str) -> None:
|
||||
# track_id = ids
|
||||
|
||||
# frequency where second filter filters
|
||||
search_freq = -50
|
||||
search_freq = 50
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, i].plot(np.arange(len(baseline)) /
|
||||
data.samplerate, baseline, c="k")
|
||||
|
||||
# plot instatneous frequency
|
||||
broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
||||
freq_temp)-5, highf=np.mean(freq_temp)+100)
|
||||
|
||||
# compute instantaneous frequency on broad signal
|
||||
broad_baseline = bandpass_filter(
|
||||
data_oi[:, electrode],
|
||||
data.samplerate,
|
||||
lowf=np.mean(freq_temp)-5,
|
||||
highf=np.mean(freq_temp)+100
|
||||
)
|
||||
# compute instantaneous frequency on narrow signal
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
)
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq), marker=".")
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, i].plot(np.arange(len(baseline)) / data.samplerate, search)
|
||||
|
||||
# compute envelopes
|
||||
cutoff = 25
|
||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||
axs[2, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
axs[2, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
broad_baseline,
|
||||
c="green",
|
||||
)
|
||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||
axs[3, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# highpass filter envelopes
|
||||
cutoff = 5
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope, data.samplerate, cutoff=cutoff
|
||||
)
|
||||
baseline_envelope = np.abs(baseline_envelope)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope, data.samplerate, cutoff=cutoff)
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope), data.samplerate, cutoff
|
||||
)
|
||||
# baseline_envelope = envelope(
|
||||
# np.abs(baseline_envelope), data.samplerate, cutoff
|
||||
# )
|
||||
|
||||
# search_envelope = bandpass_filter(
|
||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||
@ -328,43 +319,99 @@ def main(datapath: str) -> None:
|
||||
baseline_freq, data.samplerate, lowf=15, highf=8000
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
||||
# cut off first and last 0.5 * overlap at start and end
|
||||
valid = np.arange(
|
||||
int(0.5 * window_overlap), len(baseline_envelope) -
|
||||
int(0.5 * window_overlap)
|
||||
)
|
||||
baseline_envelope = baseline_envelope[valid]
|
||||
search_envelope = search_envelope[valid]
|
||||
|
||||
axs[5, i].plot(np.arange(len(baseline)) /
|
||||
data.samplerate, search_envelope)
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(0.5 * window_overlap)
|
||||
valid_t1 = len(baseline_envelope) - int(0.5 * window_overlap)
|
||||
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
|
||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
# overwrite raw time to valid region
|
||||
time_oi = time_oi[valid]
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
prominence = iqr(baseline_envelope)
|
||||
prominence = np.percentile(baseline_envelope, 90)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
baseline_envelope, prominence=prominence)
|
||||
np.abs(baseline_envelope), prominence=prominence)
|
||||
axs[4, i].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
||||
(time_oi)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks search_envelope
|
||||
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
||||
prominence = np.percentile(search_envelope, 75)
|
||||
search_peaks, _ = find_peaks(
|
||||
search_envelope, prominence=prominence)
|
||||
axs[5, i].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
||||
(time_oi)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
prominence = 2
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
np.abs(inst_freq_filtered), height=2)
|
||||
np.abs(inst_freq_filtered), prominence=prominence)
|
||||
axs[6, i].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq), marker=".")
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, i].plot(time_oi, baseline, c="k")
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, i].plot(time_oi, search)
|
||||
|
||||
# plot narrow filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot broad filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
broad_baseline,
|
||||
c="green",
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[3, i].plot(
|
||||
time_oi,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, i].plot(
|
||||
time_oi, baseline_envelope
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[5, i].plot(time_oi, search_envelope)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
axs[0, i].set_title("Spectrogram")
|
||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2, i].set_title("Fitered baseline")
|
||||
|
Loading…
Reference in New Issue
Block a user