different bootstrap approaches

This commit is contained in:
sprause 2023-01-24 20:49:57 +01:00
parent ad9cf9c785
commit 89823fdc28

View File

@ -9,7 +9,7 @@ from IPython import embed
from pandas import read_csv from pandas import read_csv
from modules.logger import makeLogger from modules.logger import makeLogger
from modules.plotstyle import PlotStyle from modules.plotstyle import PlotStyle
from modules.datahandling import causal_kde1d, acausal_kde1d from modules.datahandling import causal_kde1d, acausal_kde1d, flatten
logger = makeLogger(__name__) logger = makeLogger(__name__)
ps = PlotStyle() ps = PlotStyle()
@ -194,6 +194,7 @@ def main(datapath: str):
nrecording_physicals.append(physical_contacts) nrecording_physicals.append(physical_contacts)
# Define time window for chirps around event analysis # Define time window for chirps around event analysis
time_before_event = 30 time_before_event = 30
time_after_event = 60 time_after_event = 60
@ -212,7 +213,7 @@ def main(datapath: str):
nrecording_shuffled_convolved_offset_chirps = [] nrecording_shuffled_convolved_offset_chirps = []
nrecording_shuffled_convolved_physical_chirps = [] nrecording_shuffled_convolved_physical_chirps = []
nbootstrapping = 10 nbootstrapping = 100
for i in range(len(nrecording_chirps)): for i in range(len(nrecording_chirps)):
chirps = nrecording_chirps[i] chirps = nrecording_chirps[i]
@ -236,89 +237,124 @@ def main(datapath: str):
nshuffled_offset_chirps = [] nshuffled_offset_chirps = []
nshuffled_physical_chirps = [] nshuffled_physical_chirps = []
for j in tqdm(range(nbootstrapping)): # for j in tqdm(range(nbootstrapping)):
# Calculate interchirp intervals; add first chirp timestamp in beginning to get equal lengths # # Calculate interchirp intervals; add first chirp timestamp in beginning to get equal lengths
interchirp_intervals = np.append(np.array([chirps[0]]), np.diff(chirps)) # interchirp_intervals = np.append(np.array([chirps[0]]), np.diff(chirps))
np.random.shuffle(interchirp_intervals) # np.random.shuffle(interchirp_intervals)
shuffled_chirps = np.cumsum(interchirp_intervals) # shuffled_chirps = np.cumsum(interchirp_intervals)
# Shuffled chasing onset chirps # # Shuffled chasing onset chirps
_, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width) # _, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_onset_chirps.append(cc_shuffled_onset_chirps) # nshuffled_onset_chirps.append(cc_shuffled_onset_chirps)
# Shuffled chasing offset chirps # # Shuffled chasing offset chirps
_, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width) # _, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_offset_chirps.append(cc_shuffled_offset_chirps) # nshuffled_offset_chirps.append(cc_shuffled_offset_chirps)
# Shuffled physical contact chirps # # Shuffled physical contact chirps
_, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, recording_width) # _, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_physical_chirps.append(cc_shuffled_physical_chirps) # nshuffled_physical_chirps.append(cc_shuffled_physical_chirps)
rec_shuffled_q5_onset, rec_shuffled_median_onset, rec_shuffled_q95_onset = np.percentile(
nshuffled_onset_chirps, (5, 50, 95), axis=0) # rec_shuffled_q5_onset, rec_shuffled_median_onset, rec_shuffled_q95_onset = np.percentile(
rec_shuffled_q5_offset, rec_shuffled_median_offset, rec_shuffled_q95_offset = np.percentile( # nshuffled_onset_chirps, (5, 50, 95), axis=0)
nshuffled_offset_chirps, (5, 50, 95), axis=0) # rec_shuffled_q5_offset, rec_shuffled_median_offset, rec_shuffled_q95_offset = np.percentile(
rec_shuffled_q5_physical, rec_shuffled_median_physical, rec_shuffled_q95_physical = np.percentile( # nshuffled_offset_chirps, (5, 50, 95), axis=0)
nshuffled_physical_chirps, (5, 50, 95), axis=0) # rec_shuffled_q5_physical, rec_shuffled_median_physical, rec_shuffled_q95_physical = np.percentile(
# nshuffled_physical_chirps, (5, 50, 95), axis=0)
#### Recording plots ####
fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
ax[0].set_xlabel('Time[s]') # #### Recording plots ####
# fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
# Plot chasing onsets # ax[0].set_xlabel('Time[s]')
ax[0].set_ylabel('Chirp rate [Hz]')
ax[0].plot(time, cc_chasing_onset_chirps, color=ps.yellow, zorder=2) # # Plot chasing onsets
ax0 = ax[0].twinx() # ax[0].set_ylabel('Chirp rate [Hz]')
ax0.eventplot(centered_chasing_onset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1) # ax[0].plot(time, cc_chasing_onset_chirps, color=ps.yellow, zorder=2)
ax0.vlines(0, 0, 1.5, ps.white, 'dashed') # ax0 = ax[0].twinx()
ax[0].set_zorder(ax0.get_zorder()+1) # ax0.eventplot(centered_chasing_onset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax[0].patch.set_visible(False) # ax0.vlines(0, 0, 1.5, ps.white, 'dashed')
ax0.set_yticklabels([]) # ax[0].set_zorder(ax0.get_zorder()+1)
ax0.set_yticks([]) # ax[0].patch.set_visible(False)
ax[0].fill_between(time, rec_shuffled_q5_onset, rec_shuffled_q95_onset, color=ps.gray, alpha=0.5) # ax0.set_yticklabels([])
ax[0].plot(time, rec_shuffled_median_onset, color=ps.black) # ax0.set_yticks([])
# ######## median - q5, median + q95
# Plot chasing offets # ax[0].fill_between(time, rec_shuffled_q5_onset, rec_shuffled_q95_onset, color=ps.gray, alpha=0.5)
ax[1].set_xlabel('Time[s]') # ax[0].plot(time, rec_shuffled_median_onset, color=ps.black)
ax[1].plot(time, cc_chasing_offset_chirps, color=ps.orange, zorder=2)
ax1 = ax[1].twinx() # # Plot chasing offets
ax1.eventplot(centered_chasing_offset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1) # ax[1].set_xlabel('Time[s]')
ax1.vlines(0, 0, 1.5, ps.white, 'dashed') # ax[1].plot(time, cc_chasing_offset_chirps, color=ps.orange, zorder=2)
ax[1].set_zorder(ax1.get_zorder()+1) # ax1 = ax[1].twinx()
ax[1].patch.set_visible(False) # ax1.eventplot(centered_chasing_offset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax1.set_yticklabels([]) # ax1.vlines(0, 0, 1.5, ps.white, 'dashed')
ax1.set_yticks([]) # ax[1].set_zorder(ax1.get_zorder()+1)
ax[1].fill_between(time, rec_shuffled_q5_offset, rec_shuffled_q95_offset, color=ps.gray, alpha=0.5) # ax[1].patch.set_visible(False)
ax[1].plot(time, rec_shuffled_median_offset, color=ps.black) # ax1.set_yticklabels([])
# ax1.set_yticks([])
# Plot physical contacts # ax[1].fill_between(time, rec_shuffled_q5_offset, rec_shuffled_q95_offset, color=ps.gray, alpha=0.5)
ax[2].set_xlabel('Time[s]') # ax[1].plot(time, rec_shuffled_median_offset, color=ps.black)
ax[2].plot(time, cc_physical_chirps, color=ps.maroon, zorder=2)
ax2 = ax[2].twinx() # # Plot physical contacts
ax2.eventplot(centered_physical_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1) # ax[2].set_xlabel('Time[s]')
ax2.vlines(0, 0, 1.5, ps.white, 'dashed') # ax[2].plot(time, cc_physical_chirps, color=ps.maroon, zorder=2)
ax[2].set_zorder(ax2.get_zorder()+1) # ax2 = ax[2].twinx()
ax[2].patch.set_visible(False) # ax2.eventplot(centered_physical_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax2.set_yticklabels([]) # ax2.vlines(0, 0, 1.5, ps.white, 'dashed')
ax2.set_yticks([]) # ax[2].set_zorder(ax2.get_zorder()+1)
ax[2].fill_between(time, rec_shuffled_q5_physical, rec_shuffled_q95_physical, color=ps.gray, alpha=0.5) # ax[2].patch.set_visible(False)
ax[2].plot(time, rec_shuffled_median_physical, ps.black) # ax2.set_yticklabels([])
fig.suptitle(f'Recording: {i}') # ax2.set_yticks([])
plt.show() # ax[2].fill_between(time, rec_shuffled_q5_physical, rec_shuffled_q95_physical, color=ps.gray, alpha=0.5)
# ax[2].plot(time, rec_shuffled_median_physical, ps.black)
# fig.suptitle(f'Recording: {i}')
# # plt.show()
# plt.close() # plt.close()
nrecording_shuffled_convolved_onset_chirps.append(nshuffled_onset_chirps) # nrecording_shuffled_convolved_onset_chirps.append(nshuffled_onset_chirps)
nrecording_shuffled_convolved_offset_chirps.append(nshuffled_offset_chirps) # nrecording_shuffled_convolved_offset_chirps.append(nshuffled_offset_chirps)
nrecording_shuffled_convolved_physical_chirps.append(nshuffled_physical_chirps) # nrecording_shuffled_convolved_physical_chirps.append(nshuffled_physical_chirps)
#### New shuffle approach ####
bootstrap_onset = []
bootstrap_offset = []
bootstrap_physical = []
# New bootstrapping approach
for n in range(nbootstrapping):
diff_onset = np.diff(np.sort(flatten(nrecording_centered_onset_chirps)))
diff_offset = np.diff(np.sort(flatten(nrecording_centered_offset_chirps)))
diff_physical = np.diff(np.sort(flatten(nrecording_centered_physical_chirps)))
np.random.shuffle(diff_onset)
shuffled_onset = np.cumsum(diff_onset)
np.random.shuffle(diff_offset)
shuffled_offset = np.cumsum(diff_offset)
np.random.shuffle(diff_physical)
shuffled_physical = np.cumsum(diff_physical)
kde_onset = (acausal_kde1d(shuffled_onset, time, width))/(27*100)
kde_offset = (acausal_kde1d(shuffled_offset, time, width))/(27*100)
kde_physical = (acausal_kde1d(shuffled_physical, time, width))/(27*100)
bootstrap_onset.append(kde_onset)
bootstrap_offset.append(kde_offset)
bootstrap_physical.append(kde_physical)
# New shuffle approach q5, q50, q95
onset_q5, onset_median, onset_q95 = np.percentile(bootstrap_onset, [5, 50, 95], axis=0)
offset_q5, offset_median, offset_q95 = np.percentile(bootstrap_offset, [5, 50, 95], axis=0)
physical_q5, physical_median, physical_q95 = np.percentile(bootstrap_physical, [5, 50, 95], axis=0)
# vstack um 1. Dim zu cutten # vstack um 1. Dim zu cutten
nrecording_shuffled_convolved_onset_chirps = np.vstack(nrecording_shuffled_convolved_onset_chirps) # nrecording_shuffled_convolved_onset_chirps = np.vstack(nrecording_shuffled_convolved_onset_chirps)
nrecording_shuffled_convolved_offset_chirps = np.vstack(nrecording_shuffled_convolved_offset_chirps) # nrecording_shuffled_convolved_offset_chirps = np.vstack(nrecording_shuffled_convolved_offset_chirps)
nrecording_shuffled_convolved_physical_chirps = np.vstack(nrecording_shuffled_convolved_physical_chirps) # nrecording_shuffled_convolved_physical_chirps = np.vstack(nrecording_shuffled_convolved_physical_chirps)
shuffled_q5_onset, shuffled_median_onset, shuffled_q95_onset = np.percentile( # shuffled_q5_onset, shuffled_median_onset, shuffled_q95_onset = np.percentile(
nrecording_shuffled_convolved_onset_chirps, (5, 50, 95), axis=0) # nrecording_shuffled_convolved_onset_chirps, (5, 50, 95), axis=0)
shuffled_q5_offset, shuffled_median_offset, shuffled_q95_offset = np.percentile( # shuffled_q5_offset, shuffled_median_offset, shuffled_q95_offset = np.percentile(
nrecording_shuffled_convolved_offset_chirps, (5, 50, 95), axis=0) # nrecording_shuffled_convolved_offset_chirps, (5, 50, 95), axis=0)
shuffled_q5_physical, shuffled_median_physical, shuffled_q95_physical = np.percentile( # shuffled_q5_physical, shuffled_median_physical, shuffled_q95_physical = np.percentile(
nrecording_shuffled_convolved_physical_chirps, (5, 50, 95), axis=0) # nrecording_shuffled_convolved_physical_chirps, (5, 50, 95), axis=0)
# Flatten all chirps # Flatten all chirps
all_chirps = np.concatenate(nrecording_chirps).ravel() # not centered all_chirps = np.concatenate(nrecording_chirps).ravel() # not centered
@ -339,7 +375,6 @@ def main(datapath: str):
all_offset_chirps_convolved = (acausal_kde1d(all_offset_chirps, time, width)) / len(all_offsets) all_offset_chirps_convolved = (acausal_kde1d(all_offset_chirps, time, width)) / len(all_offsets)
all_physical_chirps_convolved = (acausal_kde1d(all_physical_chirps, time, width)) / len(all_physicals) all_physical_chirps_convolved = (acausal_kde1d(all_physical_chirps, time, width)) / len(all_physicals)
# Plot all events with all shuffled # Plot all events with all shuffled
fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all') fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
# offsets = np.arange(1,28,1) # offsets = np.arange(1,28,1)
@ -356,8 +391,10 @@ def main(datapath: str):
ax[0].patch.set_visible(False) ax[0].patch.set_visible(False)
ax0.set_yticklabels([]) ax0.set_yticklabels([])
ax0.set_yticks([]) ax0.set_yticks([])
ax[0].fill_between(time, shuffled_q5_onset, shuffled_q95_onset, color=ps.gray, alpha=0.5) # ax[0].fill_between(time, shuffled_q5_onset, shuffled_q95_onset, color=ps.gray, alpha=0.5)
ax[0].plot(time, shuffled_median_onset, color=ps.black) # ax[0].plot(time, shuffled_median_onset, color=ps.black)
ax[0].fill_between(time, onset_q5, onset_q95, color=ps.gray, alpha=0.5)
ax[0].plot(time, onset_median, color=ps.black)
# Plot chasing offets # Plot chasing offets
ax[1].set_xlabel('Time[s]') ax[1].set_xlabel('Time[s]')
@ -370,8 +407,10 @@ def main(datapath: str):
ax[1].patch.set_visible(False) ax[1].patch.set_visible(False)
ax1.set_yticklabels([]) ax1.set_yticklabels([])
ax1.set_yticks([]) ax1.set_yticks([])
ax[1].fill_between(time, shuffled_q5_offset, shuffled_q95_offset, color=ps.gray, alpha=0.5) # ax[1].fill_between(time, shuffled_q5_offset, shuffled_q95_offset, color=ps.gray, alpha=0.5)
ax[1].plot(time, shuffled_median_offset, color=ps.black) # ax[1].plot(time, shuffled_median_offset, color=ps.black)
ax[1].fill_between(time, offset_q5, offset_q95, color=ps.gray, alpha=0.5)
ax[1].plot(time, offset_median, color=ps.black)
# Plot physical contacts # Plot physical contacts
ax[2].set_xlabel('Time[s]') ax[2].set_xlabel('Time[s]')
@ -384,11 +423,13 @@ def main(datapath: str):
ax[2].patch.set_visible(False) ax[2].patch.set_visible(False)
ax2.set_yticklabels([]) ax2.set_yticklabels([])
ax2.set_yticks([]) ax2.set_yticks([])
ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color=ps.gray, alpha=0.5) # ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color=ps.gray, alpha=0.5)
ax[2].plot(time, shuffled_median_physical, ps.black) # ax[2].plot(time, shuffled_median_physical, ps.black)
ax[2].fill_between(time, physical_q5, physical_q95, color=ps.gray, alpha=0.5)
ax[2].plot(time, physical_median, ps.black)
fig.suptitle('All recordings') fig.suptitle('All recordings')
plt.show() plt.show()
# plt.close() plt.close()
embed() embed()