adding plot changes

This commit is contained in:
wendtalexander 2023-01-25 17:47:00 +01:00
parent cdcf9564df
commit 7f17de2748
2 changed files with 127 additions and 38 deletions

View File

@ -4,6 +4,7 @@ import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, spearmanr
from thunderfish.powerspectrum import decibel
from IPython import embed
@ -12,6 +13,7 @@ from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
from modules.behaviour_handling import Behavior, correct_chasing_events
ps = PlotStyle()
logger = makeLogger(__name__)
@ -50,6 +52,7 @@ def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
fish1 = folder_row['fish1'].values[0].astype(int)
fish2 = folder_row['fish2'].values[0].astype(int)
winner = folder_row['winner'].values[0].astype(int)
groub = folder_row['group'].values[0].astype(int)
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
@ -59,26 +62,51 @@ def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
size_winners = [size_fish1_row[col].values[0]
for col in ['l1', 'l2', 'l3']]
mean_size_winner = np.nanmean(size_winners)
size_fish1 = np.nanmean(size_winners)
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
mean_size_loser = np.nanmean(size_losers)
size_fish2 = np.nanmean(size_losers)
if winner == fish1:
if size_fish1 > size_fish2:
size_diff_bigger = size_fish1 - size_fish2
size_diff_smaller = size_fish2 - size_fish1
elif size_fish1 < size_fish2:
size_diff_bigger = size_fish1 - size_fish2
size_diff_smaller = size_fish2 - size_fish1
else:
size_diff_bigger = np.nan
size_diff_smaller = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
if mean_size_winner > mean_size_loser:
size_diff_bigger = mean_size_winner - mean_size_loser
size_diff_smaller = mean_size_loser - mean_size_winner
winner_fish_id = folder_row['rec_id1'].values[0]
loser_fish_id = folder_row['rec_id2'].values[0]
elif mean_size_winner < mean_size_loser:
size_diff_bigger = mean_size_loser - mean_size_winner
size_diff_smaller = mean_size_winner - mean_size_loser
elif winner == fish2:
if size_fish2 > size_fish1:
size_diff_bigger = size_fish2 - size_fish1
size_diff_smaller = size_fish1 - size_fish2
elif size_fish2 < size_fish1:
size_diff_bigger = size_fish2 - size_fish1
size_diff_smaller = size_fish1 - size_fish2
else:
size_diff_bigger = np.nan
size_diff_smaller = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
winner_fish_id = folder_row['rec_id2'].values[0]
loser_fish_id = folder_row['rec_id1'].values[0]
else:
size_diff = np.nan
size_diff_bigger = np.nan
size_diff_smaller = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
chirp_winner = len(
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
@ -92,27 +120,62 @@ def get_chirp_freq(folder_name, Behavior, order_meta_df):
foldername = folder_name.split('/')[-2]
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
fish1 = folder_row['rec_id1'].values[0].astype(int)
fish2 = folder_row['rec_id2'].values[0].astype(int)
fish1 = folder_row['fish1'].values[0].astype(int)
fish2 = folder_row['fish2'].values[0].astype(int)
fish1_freq = folder_row['rec_id1'].values[0].astype(int)
fish2_freq = folder_row['rec_id2'].values[0].astype(int)
winner = folder_row['winner'].values[0].astype(int)
chirp_freq_fish1 = np.nanmedian(
Behavior.freq[Behavior.ident == fish1])
Behavior.freq[Behavior.ident == fish1_freq])
chirp_freq_fish2 = np.nanmedian(
Behavior.freq[Behavior.ident == fish2])
Behavior.freq[Behavior.ident == fish2_freq])
if winner == fish1:
if chirp_freq_fish1 > chirp_freq_fish2:
freq_diff = chirp_freq_fish1 - chirp_freq_fish2
freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
elif chirp_freq_fish1 < chirp_freq_fish2:
freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
else:
freq_diff_higher = np.nan
freq_diff_lower = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
winner_fish_id = folder_row['rec_id1'].values[0]
loser_fish_id = folder_row['rec_id2'].values[0]
elif chirp_freq_fish1 < chirp_freq_fish2:
freq_diff = chirp_freq_fish2 - chirp_freq_fish1
elif winner == fish2:
if chirp_freq_fish2 > chirp_freq_fish1:
freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
elif chirp_freq_fish2 < chirp_freq_fish1:
freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
else:
freq_diff_higher = np.nan
freq_diff_lower = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
winner_fish_id = folder_row['rec_id2'].values[0]
loser_fish_id = folder_row['rec_id1'].values[0]
else:
freq_diff_higher = np.nan
freq_diff_lower = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
chirp_winner = len(
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
chirp_loser = len(
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
return freq_diff, chirp_diff
return freq_diff_higher, chirp_winner, freq_diff_lower, chirp_loser
def main(datapath: str):
@ -128,8 +191,17 @@ def main(datapath: str):
id_meta_df = read_csv(path_id_meta)
chirps_winner = []
size_diffs = []
size_chirps_diffs = []
size_diffs_winner = []
size_diffs_loser = []
size_chirps_winner = []
size_chirps_loser = []
freq_diffs_higher = []
freq_diffs_lower = []
freq_chirps_winner = []
freq_chirps_loser = []
chirps_loser = []
freq_diffs = []
freq_chirps_diffs = []
@ -151,17 +223,32 @@ def main(datapath: str):
foldername, bh, order_meta_df)
chirps_winner.append(winner_chirp)
chirps_loser.append(loser_chirp)
size_diff, chirp_diff = get_chirp_size(
size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser = get_chirp_size(
foldername, bh, order_meta_df, id_meta_df)
size_diffs.append(size_diff)
size_chirps_diffs.append(chirp_diff)
freq_diff, freq_chirps_diff = get_chirp_freq(
freq_diff_higher, chirp_freq_winner, freq_diff_lower, chirp_freq_loser = get_chirp_freq(
foldername, bh, order_meta_df)
freq_diffs.append(freq_diff)
freq_chirps_diffs.append(freq_chirps_diff)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1,1])
freq_diffs_higher.append(freq_diff_higher)
freq_diffs_lower.append(freq_diff_lower)
freq_chirps_winner.append(chirp_freq_winner)
freq_chirps_loser.append(chirp_freq_loser)
if np.isnan(size_diff_bigger):
continue
size_diffs_winner.append(size_diff_bigger)
size_diffs_loser.append(size_diff_smaller)
size_chirps_winner.append(chirp_winner)
size_chirps_loser.append(chirp_loser)
embed()
size_winner_pearsonr = pearsonr(size_diffs_winner, size_chirps_winner )
size_loser_pearsonr = pearsonr(size_diffs_loser, size_chirps_loser )
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(
22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1, 1], sharey=True)
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
scatterwinner = 1.15
scatterloser = 1.85
@ -189,17 +276,19 @@ def main(datapath: str):
ps.set_boxplot_color(bplot1, colors1)
colors1 = ps.orange
ps.set_boxplot_color(bplot2, colors1)
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
ax2.set_xlabel('Size difference [mm]')
ax2.scatter(size_diffs_winner, size_chirps_winner, color=ps.red)
ax2.scatter(size_diffs_loser, size_chirps_loser, color=ps.orange)
ax2.set_xlabel('Size difference [cm]')
ax2.set_ylabel('Chirps difference [n]')
#ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
ax3.scatter(freq_diffs_higher, freq_chirps_winner, color=ps.red)
ax3.scatter(freq_diffs_lower, freq_chirps_loser, color=ps.orange)
ax3.set_xlabel('Frequency difference [Hz]')
ax3.set_yticklabels([])
ax3.set
#plt.savefig('../poster/figs/chirps_winner_loser.pdf')
# pearson r
plt.savefig('../poster/figs/chirps_winner_loser.pdf')
plt.show()

Binary file not shown.