new poster template
This commit is contained in:
		
							parent
							
								
									fe41f8f59c
								
							
						
					
					
						commit
						70c4b012be
					
				| @ -133,8 +133,10 @@ class ChirpPlotBuffer: | |||||||
|             data_oi, |             data_oi, | ||||||
|             self.data.raw_rate, |             self.data.raw_rate, | ||||||
|             self.t0 - 5, |             self.t0 - 5, | ||||||
|             [np.min(self.frequency) - 100, np.max(self.frequency) + 200] |             [np.min(self.frequency) - 300, np.max(self.frequency) + 300] | ||||||
|         ) |         ) | ||||||
|  |         ax0.set_ylim(np.min(self.frequency) - 100, | ||||||
|  |                      np.max(self.frequency) + 200) | ||||||
| 
 | 
 | ||||||
|         for track_id in self.data.ids: |         for track_id in self.data.ids: | ||||||
| 
 | 
 | ||||||
| @ -157,27 +159,35 @@ class ChirpPlotBuffer: | |||||||
|                          zorder=10, color=ps.gblue1) |                          zorder=10, color=ps.gblue1) | ||||||
|             else: |             else: | ||||||
|                 ax0.plot(t-self.t0_old, f, lw=lw, |                 ax0.plot(t-self.t0_old, f, lw=lw, | ||||||
|                          zorder=10, color=ps.gray, alpha=0.5) |                          zorder=10, color=ps.black) | ||||||
| 
 | 
 | ||||||
|         ax0.fill_between( |         # ax0.fill_between( | ||||||
|             np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate), |         #     np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate), | ||||||
|             q50 - self.config.minimal_bandwidth / 2, |         #     q50 - self.config.minimal_bandwidth / 2, | ||||||
|             q50 + self.config.minimal_bandwidth / 2, |         #     q50 + self.config.minimal_bandwidth / 2, | ||||||
|             color=ps.gblue1, |         #     color=ps.gblue1, | ||||||
|             lw=1, |         #     lw=1, | ||||||
|             ls="dashed", |         #     ls="dashed", | ||||||
|             alpha=0.5, |         #     alpha=0.5, | ||||||
|         ) |         # ) | ||||||
|  | 
 | ||||||
|  |         # ax0.fill_between( | ||||||
|  |         #     np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate), | ||||||
|  |         #     search_lower, | ||||||
|  |         #     search_upper, | ||||||
|  |         #     color=ps.gblue2, | ||||||
|  |         #     lw=1, | ||||||
|  |         #     ls="dashed", | ||||||
|  |         #     alpha=0.5, | ||||||
|  |         # ) | ||||||
|  | 
 | ||||||
|  |         ax0.axhline(q50 - self.config.minimal_bandwidth / 2, | ||||||
|  |                     color=ps.gblue1, lw=1, ls="dashed") | ||||||
|  |         ax0.axhline(q50 + self.config.minimal_bandwidth / 2, | ||||||
|  |                     color=ps.gblue1, lw=1, ls="dashed") | ||||||
|  |         ax0.axhline(search_lower, color=ps.gblue2, lw=1, ls="dashed") | ||||||
|  |         ax0.axhline(search_upper, color=ps.gblue2, lw=1, ls="dashed") | ||||||
| 
 | 
 | ||||||
|         ax0.fill_between( |  | ||||||
|             np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate), |  | ||||||
|             search_lower, |  | ||||||
|             search_upper, |  | ||||||
|             color=ps.gblue2, |  | ||||||
|             lw=1, |  | ||||||
|             ls="dashed", |  | ||||||
|             alpha=0.5, |  | ||||||
|         ) |  | ||||||
|         # ax0.axhline(q50, spec_times[0], spec_times[-1], |         # ax0.axhline(q50, spec_times[0], spec_times[-1], | ||||||
|         #             color=ps.gblue1, lw=2, ls="dashed") |         #             color=ps.gblue1, lw=2, ls="dashed") | ||||||
|         # ax0.axhline(q50 + self.search_frequency, |         # ax0.axhline(q50 + self.search_frequency, | ||||||
| @ -187,7 +197,11 @@ class ChirpPlotBuffer: | |||||||
|         if len(chirps) > 0: |         if len(chirps) > 0: | ||||||
|             for chirp in chirps: |             for chirp in chirps: | ||||||
|                 ax0.scatter( |                 ax0.scatter( | ||||||
|                     chirp, np.median(self.frequency) + 150, c=ps.black, marker="v" |                     chirp, np.median(self.frequency), c=ps.red, marker=".", | ||||||
|  |                     edgecolors=ps.red, | ||||||
|  |                     facecolors=ps.red, | ||||||
|  |                     zorder=10, | ||||||
|  |                     s=70, | ||||||
|                 ) |                 ) | ||||||
| 
 | 
 | ||||||
|         # plot waveform of filtered signal |         # plot waveform of filtered signal | ||||||
| @ -207,25 +221,31 @@ class ChirpPlotBuffer: | |||||||
|                  c=ps.gblue3, lw=lw, label="baseline inst. freq.") |                  c=ps.gblue3, lw=lw, label="baseline inst. freq.") | ||||||
| 
 | 
 | ||||||
|         # plot filtered and rectified envelope |         # plot filtered and rectified envelope | ||||||
|         ax4.plot(self.time, self.baseline_envelope, c=ps.gblue1, lw=lw) |         ax4.plot(self.time, self.baseline_envelope * | ||||||
|  |                  waveform_scaler, c=ps.gblue1, lw=lw) | ||||||
|         ax4.scatter( |         ax4.scatter( | ||||||
|             (self.time)[self.baseline_peaks], |             (self.time)[self.baseline_peaks], | ||||||
|             self.baseline_envelope[self.baseline_peaks], |             (self.baseline_envelope*waveform_scaler)[self.baseline_peaks], | ||||||
|             edgecolors=ps.red, |             edgecolors=ps.red, | ||||||
|  |             facecolors=ps.red, | ||||||
|             zorder=10, |             zorder=10, | ||||||
|             marker="o", |             marker=".", | ||||||
|             facecolors="none", |             s=70, | ||||||
|  |             # facecolors="none", | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
|         # plot envelope of search signal |         # plot envelope of search signal | ||||||
|         ax5.plot(self.time, self.search_envelope, c=ps.gblue2, lw=lw) |         ax5.plot(self.time, self.search_envelope * | ||||||
|  |                  waveform_scaler, c=ps.gblue2, lw=lw) | ||||||
|         ax5.scatter( |         ax5.scatter( | ||||||
|             (self.time)[self.search_peaks], |             (self.time)[self.search_peaks], | ||||||
|             self.search_envelope[self.search_peaks], |             (self.search_envelope*waveform_scaler)[self.search_peaks], | ||||||
|             edgecolors=ps.red, |             edgecolors=ps.red, | ||||||
|  |             facecolors=ps.red, | ||||||
|             zorder=10, |             zorder=10, | ||||||
|             marker="o", |             marker=".", | ||||||
|             facecolors="none", |             s=70, | ||||||
|  |             # facecolors="none", | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
|         # plot filtered instantaneous frequency |         # plot filtered instantaneous frequency | ||||||
| @ -235,16 +255,20 @@ class ChirpPlotBuffer: | |||||||
|             self.frequency_time[self.frequency_peaks], |             self.frequency_time[self.frequency_peaks], | ||||||
|             self.frequency_filtered[self.frequency_peaks], |             self.frequency_filtered[self.frequency_peaks], | ||||||
|             edgecolors=ps.red, |             edgecolors=ps.red, | ||||||
|  |             facecolors=ps.red, | ||||||
|             zorder=10, |             zorder=10, | ||||||
|             marker="o", |             marker=".", | ||||||
|             facecolors="none", |             s=70, | ||||||
|  |             # facecolors="none", | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
|         ax0.set_ylabel("frequency [Hz]") |         ax0.set_ylabel("frequency [Hz]") | ||||||
|         ax1.set_ylabel("a.u.") |         ax1.set_ylabel(r"$\mu$V") | ||||||
|         ax2.set_ylabel("a.u.") |         ax2.set_ylabel(r"$\mu$V") | ||||||
|         ax3.set_ylabel("Hz") |         ax3.set_ylabel("Hz") | ||||||
|         ax5.set_ylabel("a.u.") |         ax4.set_ylabel(r"$\mu$V") | ||||||
|  |         ax5.set_ylabel(r"$\mu$V") | ||||||
|  |         ax6.set_ylabel("Hz") | ||||||
|         ax6.set_xlabel("time [s]") |         ax6.set_xlabel("time [s]") | ||||||
| 
 | 
 | ||||||
|         plt.setp(ax0.get_xticklabels(), visible=False) |         plt.setp(ax0.get_xticklabels(), visible=False) | ||||||
| @ -323,7 +347,7 @@ def plot_spectrogram( | |||||||
|         aspect="auto", |         aspect="auto", | ||||||
|         origin="lower", |         origin="lower", | ||||||
|         interpolation="gaussian", |         interpolation="gaussian", | ||||||
|         alpha=0.6, |         # alpha=0.6, | ||||||
|     ) |     ) | ||||||
|     # axis.use_sticky_edges = False |     # axis.use_sticky_edges = False | ||||||
|     return spec_times |     return spec_times | ||||||
| @ -628,16 +652,16 @@ def chirpdetection(datapath: str, plot: str, debug: str = 'false') -> None: | |||||||
|     raw_time = np.arange(data.raw.shape[0]) / data.raw_rate |     raw_time = np.arange(data.raw.shape[0]) / data.raw_rate | ||||||
| 
 | 
 | ||||||
|     # good chirp times for data: 2022-06-02-10_00 |     # good chirp times for data: 2022-06-02-10_00 | ||||||
|     # window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate |     window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate | ||||||
|     # window_duration_index = 60 * data.raw_rate |     window_duration_index = 60 * data.raw_rate | ||||||
| 
 | 
 | ||||||
|     #     t0 = 0 |     #     t0 = 0 | ||||||
|     #     dt = data.raw.shape[0] |     #     dt = data.raw.shape[0] | ||||||
|     # window_start_seconds = (23495 + ((28336-23495)/3)) * data.raw_rate |     # window_start_seconds = (23495 + ((28336-23495)/3)) * data.raw_rate | ||||||
|     # window_duration_seconds = (28336 - 23495) * data.raw_rate |     # window_duration_seconds = (28336 - 23495) * data.raw_rate | ||||||
| 
 | 
 | ||||||
|     window_start_index = 0 |     # window_start_index = 0 | ||||||
|     window_duration_index = data.raw.shape[0] |     # window_duration_index = data.raw.shape[0] | ||||||
| 
 | 
 | ||||||
|     # generate starting points of rolling window |     # generate starting points of rolling window | ||||||
|     window_start_indices = np.arange( |     window_start_indices = np.arange( | ||||||
| @ -1097,4 +1121,4 @@ if __name__ == "__main__": | |||||||
|     datapath = "../data/2022-06-02-10_00/" |     datapath = "../data/2022-06-02-10_00/" | ||||||
|     # datapath = "/home/weygoldt/Data/uni/efishdata/2016-colombia/fishgrid/2016-04-09-22_25/" |     # datapath = "/home/weygoldt/Data/uni/efishdata/2016-colombia/fishgrid/2016-04-09-22_25/" | ||||||
|     # datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-03-13-10_00/" |     # datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-03-13-10_00/" | ||||||
|     chirpdetection(datapath, plot="show", debug="false") |     chirpdetection(datapath, plot="save", debug="false") | ||||||
|  | |||||||
| @ -23,16 +23,16 @@ def PlotStyle() -> None: | |||||||
|         sky = "#89dceb" |         sky = "#89dceb" | ||||||
|         teal = "#94e2d5" |         teal = "#94e2d5" | ||||||
|         green = "#a6e3a1" |         green = "#a6e3a1" | ||||||
|         yellow = "#f9e2af" |         yellow = "#f9d67f" | ||||||
|         orange = "#fab387" |         orange = "#faa472" | ||||||
|         maroon = "#eba0ac" |         maroon = "#eb8486" | ||||||
|         red = "#f38ba8" |         red = "#f37588" | ||||||
|         purple = "#cba6f7" |         purple = "#d89bf7" | ||||||
|         pink = "#f5c2e7" |         pink = "#f59edb" | ||||||
|         lavender = "#b4befe" |         lavender = "#b4befe" | ||||||
|         gblue1 = "#8cb8ff" |         gblue1 = "#89b4fa" | ||||||
|         gblue2 = "#7cdcdc" |         gblue2 = "#89dceb" | ||||||
|         gblue3 = "#82e896" |         gblue3 = "#a6e3a1" | ||||||
| 
 | 
 | ||||||
|         @classmethod |         @classmethod | ||||||
|         def lims(cls, track1, track2): |         def lims(cls, track1, track2): | ||||||
| @ -108,6 +108,9 @@ def PlotStyle() -> None: | |||||||
|         @classmethod |         @classmethod | ||||||
|         def set_boxplot_color(cls, bp, color): |         def set_boxplot_color(cls, bp, color): | ||||||
|             plt.setp(bp["boxes"], color=color) |             plt.setp(bp["boxes"], color=color) | ||||||
|  |             plt.setp(bp["whiskers"], color=color) | ||||||
|  |             plt.setp(bp["caps"], color=color) | ||||||
|  |             plt.setp(bp["medians"], color=color) | ||||||
| 
 | 
 | ||||||
|         @classmethod |         @classmethod | ||||||
|         def label_subplots(cls, labels, axes, fig): |         def label_subplots(cls, labels, axes, fig): | ||||||
| @ -226,7 +229,7 @@ def PlotStyle() -> None: | |||||||
|     plt.rc("legend", fontsize=SMALL_SIZE)  # legend fontsize |     plt.rc("legend", fontsize=SMALL_SIZE)  # legend fontsize | ||||||
|     plt.rc("figure", titlesize=BIGGER_SIZE)  # fontsize of the figure title |     plt.rc("figure", titlesize=BIGGER_SIZE)  # fontsize of the figure title | ||||||
| 
 | 
 | ||||||
|     plt.rcParams["image.cmap"] = 'cmo.haline' |     plt.rcParams["image.cmap"] = "cmo.haline" | ||||||
|     plt.rcParams["axes.xmargin"] = 0.05 |     plt.rcParams["axes.xmargin"] = 0.05 | ||||||
|     plt.rcParams["axes.ymargin"] = 0.1 |     plt.rcParams["axes.ymargin"] = 0.1 | ||||||
|     plt.rcParams["axes.titlelocation"] = "left" |     plt.rcParams["axes.titlelocation"] = "left" | ||||||
| @ -247,11 +250,11 @@ def PlotStyle() -> None: | |||||||
| 
 | 
 | ||||||
|     # dark mode modifications |     # dark mode modifications | ||||||
|     plt.rcParams["boxplot.flierprops.color"] = white |     plt.rcParams["boxplot.flierprops.color"] = white | ||||||
|     plt.rcParams["boxplot.flierprops.markeredgecolor"] = white |     plt.rcParams["boxplot.flierprops.markeredgecolor"] = gray | ||||||
|     plt.rcParams["boxplot.boxprops.color"] = gray |     plt.rcParams["boxplot.boxprops.color"] = gray | ||||||
|     plt.rcParams["boxplot.whiskerprops.color"] = white |     plt.rcParams["boxplot.whiskerprops.color"] = gray | ||||||
|     plt.rcParams["boxplot.capprops.color"] = white |     plt.rcParams["boxplot.capprops.color"] = gray | ||||||
|     plt.rcParams["boxplot.medianprops.color"] = white |     plt.rcParams["boxplot.medianprops.color"] = gray | ||||||
|     plt.rcParams["text.color"] = white |     plt.rcParams["text.color"] = white | ||||||
|     plt.rcParams["axes.facecolor"] = black  # axes background color |     plt.rcParams["axes.facecolor"] = black  # axes background color | ||||||
|     plt.rcParams["axes.edgecolor"] = gray  # axes edge color |     plt.rcParams["axes.edgecolor"] = gray  # axes edge color | ||||||
| @ -264,20 +267,22 @@ def PlotStyle() -> None: | |||||||
|     plt.rcParams["axes.spines.top"] = False |     plt.rcParams["axes.spines.top"] = False | ||||||
|     plt.rcParams["axes.spines.right"] = False |     plt.rcParams["axes.spines.right"] = False | ||||||
|     plt.rcParams["axes.prop_cycle"] = cycler( |     plt.rcParams["axes.prop_cycle"] = cycler( | ||||||
|         'color', [ |         "color", | ||||||
|             '#b4befe', |         [ | ||||||
|             '#89b4fa', |             "#b4befe", | ||||||
|             '#74c7ec', |             "#89b4fa", | ||||||
|             '#89dceb', |             "#74c7ec", | ||||||
|             '#94e2d5', |             "#89dceb", | ||||||
|             '#a6e3a1', |             "#94e2d5", | ||||||
|             '#f9e2af', |             "#a6e3a1", | ||||||
|             '#fab387', |             "#f9e2af", | ||||||
|             '#eba0ac', |             "#fab387", | ||||||
|             '#f38ba8', |             "#eba0ac", | ||||||
|             '#cba6f7', |             "#f38ba8", | ||||||
|             '#f5c2e7', |             "#cba6f7", | ||||||
|         ]) |             "#f5c2e7", | ||||||
|  |         ], | ||||||
|  |     ) | ||||||
|     plt.rcParams["xtick.color"] = gray  # color of the ticks |     plt.rcParams["xtick.color"] = gray  # color of the ticks | ||||||
|     plt.rcParams["ytick.color"] = gray  # color of the ticks |     plt.rcParams["ytick.color"] = gray  # color of the ticks | ||||||
|     plt.rcParams["grid.color"] = dark_gray  # grid color |     plt.rcParams["grid.color"] = dark_gray  # grid color | ||||||
| @ -292,12 +297,11 @@ if __name__ == "__main__": | |||||||
| 
 | 
 | ||||||
|     s = PlotStyle() |     s = PlotStyle() | ||||||
| 
 | 
 | ||||||
|     import matplotlib.pyplot as plt |     import matplotlib.cbook as cbook | ||||||
|     import matplotlib.cm as cm |     import matplotlib.cm as cm | ||||||
|     import matplotlib.pyplot as plt |     import matplotlib.pyplot as plt | ||||||
|     import matplotlib.cbook as cbook |  | ||||||
|     from matplotlib.path import Path |  | ||||||
|     from matplotlib.patches import PathPatch |     from matplotlib.patches import PathPatch | ||||||
|  |     from matplotlib.path import Path | ||||||
| 
 | 
 | ||||||
|     # Fixing random state for reproducibility |     # Fixing random state for reproducibility | ||||||
|     np.random.seed(19680801) |     np.random.seed(19680801) | ||||||
| @ -305,14 +309,20 @@ if __name__ == "__main__": | |||||||
|     delta = 0.025 |     delta = 0.025 | ||||||
|     x = y = np.arange(-3.0, 3.0, delta) |     x = y = np.arange(-3.0, 3.0, delta) | ||||||
|     X, Y = np.meshgrid(x, y) |     X, Y = np.meshgrid(x, y) | ||||||
|     Z1 = np.exp(-X**2 - Y**2) |     Z1 = np.exp(-(X**2) - Y**2) | ||||||
|     Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) |     Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2) | ||||||
|     Z = (Z1 - Z2) * 2 |     Z = (Z1 - Z2) * 2 | ||||||
| 
 | 
 | ||||||
|     fig1, ax = plt.subplots() |     fig1, ax = plt.subplots() | ||||||
|     im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn, |     im = ax.imshow( | ||||||
|                    origin='lower', extent=[-3, 3, -3, 3], |         Z, | ||||||
|                    vmax=abs(Z).max(), vmin=-abs(Z).max()) |         interpolation="bilinear", | ||||||
|  |         cmap=cm.RdYlGn, | ||||||
|  |         origin="lower", | ||||||
|  |         extent=[-3, 3, -3, 3], | ||||||
|  |         vmax=abs(Z).max(), | ||||||
|  |         vmin=-abs(Z).max(), | ||||||
|  |     ) | ||||||
| 
 | 
 | ||||||
|     plt.show() |     plt.show() | ||||||
| 
 | 
 | ||||||
| @ -325,22 +335,21 @@ if __name__ == "__main__": | |||||||
|     all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] |     all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] | ||||||
| 
 | 
 | ||||||
|     # plot violin plot |     # plot violin plot | ||||||
|     axs[0].violinplot(all_data, |     axs[0].violinplot(all_data, showmeans=False, showmedians=True) | ||||||
|                       showmeans=False, |     axs[0].set_title("Violin plot") | ||||||
|                       showmedians=True) |  | ||||||
|     axs[0].set_title('Violin plot') |  | ||||||
| 
 | 
 | ||||||
|     # plot box plot |     # plot box plot | ||||||
|     axs[1].boxplot(all_data) |     axs[1].boxplot(all_data) | ||||||
|     axs[1].set_title('Box plot') |     axs[1].set_title("Box plot") | ||||||
| 
 | 
 | ||||||
|     # adding horizontal grid lines |     # adding horizontal grid lines | ||||||
|     for ax in axs: |     for ax in axs: | ||||||
|         ax.yaxis.grid(True) |         ax.yaxis.grid(True) | ||||||
|         ax.set_xticks([y + 1 for y in range(len(all_data))], |         ax.set_xticks( | ||||||
|                       labels=['x1', 'x2', 'x3', 'x4']) |             [y + 1 for y in range(len(all_data))], labels=["x1", "x2", "x3", "x4"] | ||||||
|         ax.set_xlabel('Four separate samples') |         ) | ||||||
|         ax.set_ylabel('Observed values') |         ax.set_xlabel("Four separate samples") | ||||||
|  |         ax.set_ylabel("Observed values") | ||||||
| 
 | 
 | ||||||
|     plt.show() |     plt.show() | ||||||
| 
 | 
 | ||||||
| @ -352,24 +361,42 @@ if __name__ == "__main__": | |||||||
|     theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False) |     theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False) | ||||||
|     radii = 10 * np.random.rand(N) |     radii = 10 * np.random.rand(N) | ||||||
|     width = np.pi / 4 * np.random.rand(N) |     width = np.pi / 4 * np.random.rand(N) | ||||||
|     colors = cmo.cm.haline(radii / 10.) |     colors = cmo.cm.haline(radii / 10.0) | ||||||
| 
 | 
 | ||||||
|     ax = plt.subplot(projection='polar') |     ax = plt.subplot(projection="polar") | ||||||
|     ax.bar(theta, radii, width=width, bottom=0.0, color=colors, alpha=0.5) |     ax.bar(theta, radii, width=width, bottom=0.0, color=colors, alpha=0.5) | ||||||
| 
 | 
 | ||||||
|     plt.show() |     plt.show() | ||||||
| 
 | 
 | ||||||
|     methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', |     methods = [ | ||||||
|                'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', |         None, | ||||||
|                'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos'] |         "none", | ||||||
|  |         "nearest", | ||||||
|  |         "bilinear", | ||||||
|  |         "bicubic", | ||||||
|  |         "spline16", | ||||||
|  |         "spline36", | ||||||
|  |         "hanning", | ||||||
|  |         "hamming", | ||||||
|  |         "hermite", | ||||||
|  |         "kaiser", | ||||||
|  |         "quadric", | ||||||
|  |         "catrom", | ||||||
|  |         "gaussian", | ||||||
|  |         "bessel", | ||||||
|  |         "mitchell", | ||||||
|  |         "sinc", | ||||||
|  |         "lanczos", | ||||||
|  |     ] | ||||||
| 
 | 
 | ||||||
|     # Fixing random state for reproducibility |     # Fixing random state for reproducibility | ||||||
|     np.random.seed(19680801) |     np.random.seed(19680801) | ||||||
| 
 | 
 | ||||||
|     grid = np.random.rand(4, 4) |     grid = np.random.rand(4, 4) | ||||||
| 
 | 
 | ||||||
|     fig, axs = plt.subplots(nrows=3, ncols=6, figsize=(9, 6), |     fig, axs = plt.subplots( | ||||||
|                             subplot_kw={'xticks': [], 'yticks': []}) |         nrows=3, ncols=6, figsize=(9, 6), subplot_kw={"xticks": [], "yticks": []} | ||||||
|  |     ) | ||||||
| 
 | 
 | ||||||
|     for ax, interp_method in zip(axs.flat, methods): |     for ax, interp_method in zip(axs.flat, methods): | ||||||
|         ax.imshow(grid, interpolation=interp_method) |         ax.imshow(grid, interpolation=interp_method) | ||||||
|  | |||||||
| @ -41,9 +41,9 @@ def main(): | |||||||
|     freqtime2, freq2 = instantaneous_frequency( |     freqtime2, freq2 = instantaneous_frequency( | ||||||
|         filtered2, data.raw_rate, smoothing_window=3) |         filtered2, data.raw_rate, smoothing_window=3) | ||||||
| 
 | 
 | ||||||
|     ax1.plot(freqtime1*timescaler, freq1, color=ps.gblue1, |     ax1.plot(freqtime1*timescaler, freq1, color=ps.red, | ||||||
|              lw=2, label=f"fish 1, {np.median(freq1):.0f} Hz") |              lw=2, label=f"fish 1, {np.median(freq1):.0f} Hz") | ||||||
|     ax1.plot(freqtime2*timescaler, freq2, color=ps.gblue3, |     ax1.plot(freqtime2*timescaler, freq2, color=ps.orange, | ||||||
|              lw=2, label=f"fish 2, {np.median(freq2):.0f} Hz") |              lw=2, label=f"fish 2, {np.median(freq2):.0f} Hz") | ||||||
|     ax1.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center", |     ax1.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center", | ||||||
|                mode="normal", borderaxespad=0, ncol=2) |                mode="normal", borderaxespad=0, ncol=2) | ||||||
|  | |||||||
							
								
								
									
										
											BIN
										
									
								
								poster/figs/algorithm.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								poster/figs/algorithm.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								poster/figs/introplot.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								poster/figs/introplot.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								poster/main.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								poster/main.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -7,7 +7,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val | |||||||
| \begin{document} | \begin{document} | ||||||
| 
 | 
 | ||||||
| \renewcommand{\baselinestretch}{1} | \renewcommand{\baselinestretch}{1} | ||||||
| \title{\parbox{1500pt}{Poster}} | \title{\parbox{1500pt}{Detection of transient communication signals in weakly electric fish}} | ||||||
| \author{Sina Prause, Alexander Wendt, and Patrick Weygoldt} | \author{Sina Prause, Alexander Wendt, and Patrick Weygoldt} | ||||||
| \institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen} | \institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen} | ||||||
| \usetitlestyle[]{sampletitle} | \usetitlestyle[]{sampletitle} | ||||||
| @ -21,17 +21,15 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val | |||||||
|     sender identification of freely interacting individuals impossible. |     sender identification of freely interacting individuals impossible. | ||||||
|     This profoundly limits our current understanding of chirps to experiments |     This profoundly limits our current understanding of chirps to experiments | ||||||
|     with single - or physically separated - individuals. |     with single - or physically separated - individuals. | ||||||
|     \vspace{0.6cm} |     % \begin{tikzfigure}[] | ||||||
|     \begin{tikzfigure}[] |     %     \label{griddrawing} | ||||||
|         \label{griddrawing} |     %     \includegraphics[width=1\linewidth]{figs/introplot} | ||||||
|         \includegraphics[width=0.5\linewidth]{example-image-a} |     % \end{tikzfigure} | ||||||
|     \end{tikzfigure} |  | ||||||
| } | } | ||||||
| 
 |  | ||||||
| \myblock[TranspBlock]{Chirp detection}{ | \myblock[TranspBlock]{Chirp detection}{ | ||||||
|     \begin{tikzfigure}[] |     \begin{tikzfigure}[] | ||||||
|         \label{fig:example_a} |         \label{fig:example_a} | ||||||
|         \includegraphics[width=0.5\linewidth]{example-image-a} |         \includegraphics[width=1\linewidth]{figs/algorithm} | ||||||
|     \end{tikzfigure} |     \end{tikzfigure} | ||||||
|     \vspace{0cm} |     \vspace{0cm} | ||||||
| } | } | ||||||
| @ -67,7 +65,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val | |||||||
|     \vspace{-1cm} |     \vspace{-1cm} | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| \myblock[TranspBlock]{Conclusion}{ | \myblock[GrayBlock]{Conclusion}{ | ||||||
|     \begin{itemize} |     \begin{itemize} | ||||||
|         \setlength\itemsep{0.5em} |         \setlength\itemsep{0.5em} | ||||||
|         \item Our analysis is the first to indicate that \textit{A. leptorhynchus} uses long, diffuse and synchronized EOD$f$ signals to communicate in addition to chirps and rises. |         \item Our analysis is the first to indicate that \textit{A. leptorhynchus} uses long, diffuse and synchronized EOD$f$ signals to communicate in addition to chirps and rises. | ||||||
|  | |||||||
| @ -1,9 +1,9 @@ | |||||||
| \tikzposterlatexaffectionproofoff | \tikzposterlatexaffectionproofoff | ||||||
| \usetheme{Default} | \usetheme{Default} | ||||||
| 
 | 
 | ||||||
| \definecolor{text}{HTML}{ffffff} | \definecolor{text}{HTML}{e0e4f7} | ||||||
| \definecolor{background}{HTML}{080808} | \definecolor{background}{HTML}{111116} | ||||||
| \definecolor{boxes}{HTML}{1E1E1E} | \definecolor{boxes}{HTML}{2a2a32} | ||||||
| \definecolor{unired}{HTML}{a51e37} | \definecolor{unired}{HTML}{a51e37} | ||||||
| 
 | 
 | ||||||
| \colorlet{blocktitlefgcolor}{text} | \colorlet{blocktitlefgcolor}{text} | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user