inserted two functions from CTCPTC stuff

This commit is contained in:
sprause 2023-01-25 09:11:51 +01:00
parent 4b5aec2e65
commit 6fd3323c6c

View File

@ -8,6 +8,7 @@ from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.datahandling import causal_kde1d, acausal_kde1d
logger = makeLogger(__name__)
@ -76,14 +77,14 @@ def correct_chasing_events(
offset_ids = np.arange(
len(category))[category == 1]
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
wrong_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
if onset_ids[0] > offset_ids[0]:
offset_ids = np.delete(offset_ids, 0)
help_index = offset_ids[0]
woring_bh = np.append(woring_bh, help_index)
wrong_bh = np.append(wrong_bh[help_index])
category = np.delete(category, woring_bh)
timestamps = np.delete(timestamps, woring_bh)
category = np.delete(category, wrong_bh)
timestamps = np.delete(timestamps, wrong_bh)
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
@ -95,5 +96,40 @@ def correct_chasing_events(
elif len(onset_ids) == len(offset_ids):
logger.info('Chasing events are equal')
return category, timestamps
def event_triggered_chirps(
event: np.ndarray,
chirps:np.ndarray,
time_before_event: int,
time_after_event: int,
dt: float,
width: float,
)-> tuple[np.ndarray, np.ndarray, np.ndarray]:
event_chirps = [] # chirps that are in specified window around event
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
for event_timestamp in event:
start = event_timestamp - time_before_event
stop = event_timestamp + time_after_event
chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)]
event_chirps.append(chirps_around_event)
if len(chirps_around_event) == 0:
continue
else:
centered_chirps.append(chirps_around_event - event_timestamp)
time = np.arange(-time_before_event, time_after_event, dt)
# Kernel density estimation with some if's
if len(centered_chirps) == 0:
centered_chirps = np.array([])
centered_chirps_convolved = np.zeros(len(time))
else:
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
centered_chirps_convolved = (acausal_kde1d(centered_chirps, time, width)) / len(event)
return event_chirps, centered_chirps, centered_chirps_convolved