inserted two functions from CTCPTC stuff
This commit is contained in:
parent
4b5aec2e65
commit
6fd3323c6c
@ -8,6 +8,7 @@ from IPython import embed
|
||||
|
||||
from pandas import read_csv
|
||||
from modules.logger import makeLogger
|
||||
from modules.datahandling import causal_kde1d, acausal_kde1d
|
||||
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
@ -76,14 +77,14 @@ def correct_chasing_events(
|
||||
offset_ids = np.arange(
|
||||
len(category))[category == 1]
|
||||
|
||||
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||
wrong_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||
if onset_ids[0] > offset_ids[0]:
|
||||
offset_ids = np.delete(offset_ids, 0)
|
||||
help_index = offset_ids[0]
|
||||
woring_bh = np.append(woring_bh, help_index)
|
||||
wrong_bh = np.append(wrong_bh[help_index])
|
||||
|
||||
category = np.delete(category, woring_bh)
|
||||
timestamps = np.delete(timestamps, woring_bh)
|
||||
category = np.delete(category, wrong_bh)
|
||||
timestamps = np.delete(timestamps, wrong_bh)
|
||||
|
||||
# Check whether on- or offset is longer and calculate length difference
|
||||
if len(onset_ids) > len(offset_ids):
|
||||
@ -94,6 +95,41 @@ def correct_chasing_events(
|
||||
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
||||
elif len(onset_ids) == len(offset_ids):
|
||||
logger.info('Chasing events are equal')
|
||||
|
||||
return category, timestamps
|
||||
|
||||
|
||||
def event_triggered_chirps(
|
||||
event: np.ndarray,
|
||||
chirps:np.ndarray,
|
||||
time_before_event: int,
|
||||
time_after_event: int,
|
||||
dt: float,
|
||||
width: float,
|
||||
)-> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
|
||||
event_chirps = [] # chirps that are in specified window around event
|
||||
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
|
||||
|
||||
for event_timestamp in event:
|
||||
start = event_timestamp - time_before_event
|
||||
stop = event_timestamp + time_after_event
|
||||
chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)]
|
||||
event_chirps.append(chirps_around_event)
|
||||
if len(chirps_around_event) == 0:
|
||||
continue
|
||||
else:
|
||||
centered_chirps.append(chirps_around_event - event_timestamp)
|
||||
|
||||
time = np.arange(-time_before_event, time_after_event, dt)
|
||||
|
||||
# Kernel density estimation with some if's
|
||||
if len(centered_chirps) == 0:
|
||||
centered_chirps = np.array([])
|
||||
centered_chirps_convolved = np.zeros(len(time))
|
||||
else:
|
||||
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
|
||||
centered_chirps_convolved = (acausal_kde1d(centered_chirps, time, width)) / len(event)
|
||||
|
||||
return event_chirps, centered_chirps, centered_chirps_convolved
|
||||
|
||||
|
||||
return category, timestamps
|
Loading…
Reference in New Issue
Block a user