???
This commit is contained in:
commit
6b4f3a42cc
@ -253,7 +253,7 @@ def main(datapath: str):
|
|||||||
ps.set_boxplot_color(bplot2, colors1)
|
ps.set_boxplot_color(bplot2, colors1)
|
||||||
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
||||||
ax2.set_xlabel('Size difference [mm]')
|
ax2.set_xlabel('Size difference [mm]')
|
||||||
ax2.set_ylabel('Chirps difference [n]')
|
ax2.set_ylabel('Chirps [n]')
|
||||||
|
|
||||||
ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
||||||
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
||||||
|
@ -4,6 +4,7 @@ import os
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from scipy.stats import pearsonr, spearmanr
|
||||||
from thunderfish.powerspectrum import decibel
|
from thunderfish.powerspectrum import decibel
|
||||||
|
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
@ -12,6 +13,7 @@ from modules.logger import makeLogger
|
|||||||
from modules.plotstyle import PlotStyle
|
from modules.plotstyle import PlotStyle
|
||||||
from modules.behaviour_handling import Behavior, correct_chasing_events
|
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||||
|
|
||||||
|
|
||||||
ps = PlotStyle()
|
ps = PlotStyle()
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
@ -50,6 +52,7 @@ def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
|
|||||||
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||||
fish1 = folder_row['fish1'].values[0].astype(int)
|
fish1 = folder_row['fish1'].values[0].astype(int)
|
||||||
fish2 = folder_row['fish2'].values[0].astype(int)
|
fish2 = folder_row['fish2'].values[0].astype(int)
|
||||||
|
winner = folder_row['winner'].values[0].astype(int)
|
||||||
|
|
||||||
groub = folder_row['group'].values[0].astype(int)
|
groub = folder_row['group'].values[0].astype(int)
|
||||||
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
||||||
@ -59,26 +62,51 @@ def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
|
|||||||
|
|
||||||
size_winners = [size_fish1_row[col].values[0]
|
size_winners = [size_fish1_row[col].values[0]
|
||||||
for col in ['l1', 'l2', 'l3']]
|
for col in ['l1', 'l2', 'l3']]
|
||||||
mean_size_winner = np.nanmean(size_winners)
|
size_fish1 = np.nanmean(size_winners)
|
||||||
|
|
||||||
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
|
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
|
||||||
mean_size_loser = np.nanmean(size_losers)
|
size_fish2 = np.nanmean(size_losers)
|
||||||
|
if winner == fish1:
|
||||||
|
if size_fish1 > size_fish2:
|
||||||
|
size_diff_bigger = size_fish1 - size_fish2
|
||||||
|
size_diff_smaller = size_fish2 - size_fish1
|
||||||
|
|
||||||
|
elif size_fish1 < size_fish2:
|
||||||
|
size_diff_bigger = size_fish1 - size_fish2
|
||||||
|
size_diff_smaller = size_fish2 - size_fish1
|
||||||
|
else:
|
||||||
|
size_diff_bigger = np.nan
|
||||||
|
size_diff_smaller = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
|
||||||
|
|
||||||
if mean_size_winner > mean_size_loser:
|
|
||||||
size_diff_bigger = mean_size_winner - mean_size_loser
|
|
||||||
size_diff_smaller = mean_size_loser - mean_size_winner
|
|
||||||
winner_fish_id = folder_row['rec_id1'].values[0]
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||||
loser_fish_id = folder_row['rec_id2'].values[0]
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
|
||||||
elif mean_size_winner < mean_size_loser:
|
elif winner == fish2:
|
||||||
size_diff_bigger = mean_size_loser - mean_size_winner
|
if size_fish2 > size_fish1:
|
||||||
size_diff_smaller = mean_size_winner - mean_size_loser
|
size_diff_bigger = size_fish2 - size_fish1
|
||||||
|
size_diff_smaller = size_fish1 - size_fish2
|
||||||
|
|
||||||
|
elif size_fish2 < size_fish1:
|
||||||
|
size_diff_bigger = size_fish2 - size_fish1
|
||||||
|
size_diff_smaller = size_fish1 - size_fish2
|
||||||
|
else:
|
||||||
|
size_diff_bigger = np.nan
|
||||||
|
size_diff_smaller = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
|
||||||
|
|
||||||
winner_fish_id = folder_row['rec_id2'].values[0]
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||||
loser_fish_id = folder_row['rec_id1'].values[0]
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||||
else:
|
else:
|
||||||
size_diff = np.nan
|
size_diff_bigger = np.nan
|
||||||
|
size_diff_smaller = np.nan
|
||||||
winner_fish_id = np.nan
|
winner_fish_id = np.nan
|
||||||
loser_fish_id = np.nan
|
loser_fish_id = np.nan
|
||||||
|
return size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id
|
||||||
|
|
||||||
chirp_winner = len(
|
chirp_winner = len(
|
||||||
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
||||||
@ -92,27 +120,62 @@ def get_chirp_freq(folder_name, Behavior, order_meta_df):
|
|||||||
|
|
||||||
foldername = folder_name.split('/')[-2]
|
foldername = folder_name.split('/')[-2]
|
||||||
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||||
fish1 = folder_row['rec_id1'].values[0].astype(int)
|
fish1 = folder_row['fish1'].values[0].astype(int)
|
||||||
fish2 = folder_row['rec_id2'].values[0].astype(int)
|
fish2 = folder_row['fish2'].values[0].astype(int)
|
||||||
|
|
||||||
|
fish1_freq = folder_row['rec_id1'].values[0].astype(int)
|
||||||
|
fish2_freq = folder_row['rec_id2'].values[0].astype(int)
|
||||||
|
winner = folder_row['winner'].values[0].astype(int)
|
||||||
chirp_freq_fish1 = np.nanmedian(
|
chirp_freq_fish1 = np.nanmedian(
|
||||||
Behavior.freq[Behavior.ident == fish1])
|
Behavior.freq[Behavior.ident == fish1_freq])
|
||||||
chirp_freq_fish2 = np.nanmedian(
|
chirp_freq_fish2 = np.nanmedian(
|
||||||
Behavior.freq[Behavior.ident == fish2])
|
Behavior.freq[Behavior.ident == fish2_freq])
|
||||||
|
|
||||||
|
if winner == fish1:
|
||||||
if chirp_freq_fish1 > chirp_freq_fish2:
|
if chirp_freq_fish1 > chirp_freq_fish2:
|
||||||
freq_diff = chirp_freq_fish1 - chirp_freq_fish2
|
freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
|
||||||
|
freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
|
||||||
|
|
||||||
|
elif chirp_freq_fish1 < chirp_freq_fish2:
|
||||||
|
freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
|
||||||
|
freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
|
||||||
|
else:
|
||||||
|
freq_diff_higher = np.nan
|
||||||
|
freq_diff_lower = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
|
||||||
winner_fish_id = folder_row['rec_id1'].values[0]
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||||
loser_fish_id = folder_row['rec_id2'].values[0]
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
|
||||||
elif chirp_freq_fish1 < chirp_freq_fish2:
|
elif winner == fish2:
|
||||||
freq_diff = chirp_freq_fish2 - chirp_freq_fish1
|
if chirp_freq_fish2 > chirp_freq_fish1:
|
||||||
|
freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
|
||||||
|
freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
|
||||||
|
|
||||||
|
elif chirp_freq_fish2 < chirp_freq_fish1:
|
||||||
|
freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
|
||||||
|
freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
|
||||||
|
else:
|
||||||
|
freq_diff_higher = np.nan
|
||||||
|
freq_diff_lower = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
|
||||||
winner_fish_id = folder_row['rec_id2'].values[0]
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||||
loser_fish_id = folder_row['rec_id1'].values[0]
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||||
|
else:
|
||||||
|
freq_diff_higher = np.nan
|
||||||
|
freq_diff_lower = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
|
||||||
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
|
chirp_winner = len(
|
||||||
|
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
||||||
|
chirp_loser = len(
|
||||||
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||||
|
|
||||||
return freq_diff, chirp_diff
|
return freq_diff_higher, chirp_winner, freq_diff_lower, chirp_loser
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str):
|
def main(datapath: str):
|
||||||
@ -128,8 +191,17 @@ def main(datapath: str):
|
|||||||
id_meta_df = read_csv(path_id_meta)
|
id_meta_df = read_csv(path_id_meta)
|
||||||
|
|
||||||
chirps_winner = []
|
chirps_winner = []
|
||||||
size_diffs = []
|
|
||||||
size_chirps_diffs = []
|
size_diffs_winner = []
|
||||||
|
size_diffs_loser = []
|
||||||
|
size_chirps_winner = []
|
||||||
|
size_chirps_loser = []
|
||||||
|
|
||||||
|
freq_diffs_higher = []
|
||||||
|
freq_diffs_lower = []
|
||||||
|
freq_chirps_winner = []
|
||||||
|
freq_chirps_loser = []
|
||||||
|
|
||||||
chirps_loser = []
|
chirps_loser = []
|
||||||
freq_diffs = []
|
freq_diffs = []
|
||||||
freq_chirps_diffs = []
|
freq_chirps_diffs = []
|
||||||
@ -151,17 +223,32 @@ def main(datapath: str):
|
|||||||
foldername, bh, order_meta_df)
|
foldername, bh, order_meta_df)
|
||||||
chirps_winner.append(winner_chirp)
|
chirps_winner.append(winner_chirp)
|
||||||
chirps_loser.append(loser_chirp)
|
chirps_loser.append(loser_chirp)
|
||||||
size_diff, chirp_diff = get_chirp_size(
|
|
||||||
|
size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser = get_chirp_size(
|
||||||
foldername, bh, order_meta_df, id_meta_df)
|
foldername, bh, order_meta_df, id_meta_df)
|
||||||
size_diffs.append(size_diff)
|
|
||||||
size_chirps_diffs.append(chirp_diff)
|
|
||||||
|
|
||||||
freq_diff, freq_chirps_diff = get_chirp_freq(
|
freq_diff_higher, chirp_freq_winner, freq_diff_lower, chirp_freq_loser = get_chirp_freq(
|
||||||
foldername, bh, order_meta_df)
|
foldername, bh, order_meta_df)
|
||||||
freq_diffs.append(freq_diff)
|
|
||||||
freq_chirps_diffs.append(freq_chirps_diff)
|
|
||||||
|
|
||||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1,1])
|
freq_diffs_higher.append(freq_diff_higher)
|
||||||
|
freq_diffs_lower.append(freq_diff_lower)
|
||||||
|
freq_chirps_winner.append(chirp_freq_winner)
|
||||||
|
freq_chirps_loser.append(chirp_freq_loser)
|
||||||
|
|
||||||
|
if np.isnan(size_diff_bigger):
|
||||||
|
continue
|
||||||
|
size_diffs_winner.append(size_diff_bigger)
|
||||||
|
size_diffs_loser.append(size_diff_smaller)
|
||||||
|
size_chirps_winner.append(chirp_winner)
|
||||||
|
size_chirps_loser.append(chirp_loser)
|
||||||
|
|
||||||
|
|
||||||
|
embed()
|
||||||
|
size_winner_pearsonr = pearsonr(size_diffs_winner, size_chirps_winner )
|
||||||
|
size_loser_pearsonr = pearsonr(size_diffs_loser, size_chirps_loser )
|
||||||
|
|
||||||
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(
|
||||||
|
22*ps.cm, 12*ps.cm), sharey=True)
|
||||||
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
|
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
|
||||||
scatterwinner = 1.15
|
scatterwinner = 1.15
|
||||||
scatterloser = 1.85
|
scatterloser = 1.85
|
||||||
@ -173,9 +260,9 @@ def main(datapath: str):
|
|||||||
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
||||||
2], showfliers=False, patch_artist=True)
|
2], showfliers=False, patch_artist=True)
|
||||||
ax1.scatter(np.ones(len(chirps_winner)) *
|
ax1.scatter(np.ones(len(chirps_winner)) *
|
||||||
scatterwinner, chirps_winner, color='r')
|
scatterwinner, chirps_winner, color=ps.red)
|
||||||
ax1.scatter(np.ones(len(chirps_loser)) *
|
ax1.scatter(np.ones(len(chirps_loser)) *
|
||||||
scatterloser, chirps_loser, color='r')
|
scatterloser, chirps_loser, color=ps.orange)
|
||||||
ax1.set_xticklabels(['winner', 'loser'])
|
ax1.set_xticklabels(['winner', 'loser'])
|
||||||
ax1.text(0.1, 0.9, f'n = {len(chirps_winner)}',
|
ax1.text(0.1, 0.9, f'n = {len(chirps_winner)}',
|
||||||
transform=ax1.transAxes, color=ps.white)
|
transform=ax1.transAxes, color=ps.white)
|
||||||
@ -189,17 +276,13 @@ def main(datapath: str):
|
|||||||
ps.set_boxplot_color(bplot1, colors1)
|
ps.set_boxplot_color(bplot1, colors1)
|
||||||
colors1 = ps.orange
|
colors1 = ps.orange
|
||||||
ps.set_boxplot_color(bplot2, colors1)
|
ps.set_boxplot_color(bplot2, colors1)
|
||||||
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
ax2.scatter(size_diffs_winner, size_chirps_winner, color=ps.red)
|
||||||
ax2.set_xlabel('Size difference [mm]')
|
ax2.scatter(size_diffs_loser, size_chirps_loser, color=ps.orange)
|
||||||
ax2.set_ylabel('Chirps difference [n]')
|
|
||||||
|
|
||||||
#ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
ax2.set_xlabel('Size difference [cm]')
|
||||||
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
|
||||||
ax3.set_xlabel('Frequency difference [Hz]')
|
|
||||||
ax3.set_yticklabels([])
|
|
||||||
ax3.set
|
|
||||||
|
|
||||||
#plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
# pearson r
|
||||||
|
plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
81
code/plot_chirps_in_chasing.py
Normal file
81
code/plot_chirps_in_chasing.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from scipy.stats import pearsonr, spearmanr
|
||||||
|
from thunderfish.powerspectrum import decibel
|
||||||
|
|
||||||
|
from IPython import embed
|
||||||
|
from pandas import read_csv
|
||||||
|
from modules.logger import makeLogger
|
||||||
|
from modules.plotstyle import PlotStyle
|
||||||
|
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||||
|
from modules.datahandling import flatten
|
||||||
|
|
||||||
|
|
||||||
|
ps = PlotStyle()
|
||||||
|
|
||||||
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def main(datapath: str):
|
||||||
|
|
||||||
|
foldernames = [
|
||||||
|
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||||
|
time_precents = []
|
||||||
|
chirps_percents = []
|
||||||
|
for foldername in foldernames:
|
||||||
|
# behabvior is pandas dataframe with all the data
|
||||||
|
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||||
|
continue
|
||||||
|
bh = Behavior(foldername)
|
||||||
|
|
||||||
|
category = bh.behavior
|
||||||
|
timestamps = bh.start_s
|
||||||
|
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||||
|
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||||
|
category, timestamps = correct_chasing_events(category, timestamps)
|
||||||
|
|
||||||
|
chasing_onset = timestamps[category == 0]
|
||||||
|
chasing_offset = timestamps[category == 1]
|
||||||
|
if len(chasing_onset) != len(chasing_offset):
|
||||||
|
embed()
|
||||||
|
|
||||||
|
chirps_in_chasings = []
|
||||||
|
for onset, offset in zip(chasing_onset, chasing_offset):
|
||||||
|
chirps_in_chasing = [c for c in bh.chirps if (c > onset) & (c < offset)]
|
||||||
|
chirps_in_chasings.append(chirps_in_chasing)
|
||||||
|
|
||||||
|
try:
|
||||||
|
time_chasing = np.sum(chasing_offset[chasing_offset<3*60*60] - chasing_onset[chasing_onset<3*60*60])
|
||||||
|
except:
|
||||||
|
time_chasing = np.sum(chasing_offset[chasing_offset<3*60*60] - chasing_onset[chasing_onset<3*60*60][:-1])
|
||||||
|
|
||||||
|
|
||||||
|
time_chasing_percent = (time_chasing/(3*60*60))*100
|
||||||
|
chirps_chasing = np.asarray(flatten(chirps_in_chasings))
|
||||||
|
chirps_chasing_new = chirps_chasing[chirps_chasing<3*60*60]
|
||||||
|
chirps_percent = (len(chirps_chasing_new)/len(bh.chirps))*100
|
||||||
|
|
||||||
|
time_precents.append(time_chasing_percent)
|
||||||
|
chirps_percents.append(chirps_percent)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(14*ps.cm, 10*ps.cm))
|
||||||
|
|
||||||
|
ax.boxplot([time_precents, chirps_percents])
|
||||||
|
ax.set_xticklabels(['Time Chasing', 'Chirps in Chasing'])
|
||||||
|
ax.set_ylabel('Percent')
|
||||||
|
ax.scatter(np.ones(len(time_precents))*1.25, time_precents, color=ps.white)
|
||||||
|
ax.scatter(np.ones(len(chirps_percents))*1.75, chirps_percents, color=ps.white)
|
||||||
|
plt.savefig('../poster/figs/chirps_in_chasing.pdf')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Path to the data
|
||||||
|
datapath = '../data/mount_data/'
|
||||||
|
main(datapath)
|
||||||
|
|
||||||
|
|
BIN
poster/figs/chirps_in_chasing.pdf
Normal file
BIN
poster/figs/chirps_in_chasing.pdf
Normal file
Binary file not shown.
Binary file not shown.
BIN
poster/main.pdf
BIN
poster/main.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user