changed to class
This commit is contained in:
parent
98d98818cb
commit
5c48efb2e9
@ -10,7 +10,7 @@ from thunderfish.dataloader import DataLoader
|
||||
from thunderfish.powerspectrum import spectrogram, decibel
|
||||
|
||||
from modules.filters import bandpass_filter, envelope, highpass_filter
|
||||
from modules.filehandling import ConfLoader
|
||||
from modules.filehandling import ConfLoader, LoadData
|
||||
|
||||
|
||||
def instantaneos_frequency(
|
||||
@ -136,22 +136,24 @@ def main(datapath: str) -> None:
|
||||
|
||||
# load raw file
|
||||
file = os.path.join(datapath, "traces-grid1.raw")
|
||||
data = DataLoader(file, 60.0, 0, channel=-1)
|
||||
# data = DataLoader(file, 60.0, 0, channel=-1)
|
||||
|
||||
data = LoadData(datapath)
|
||||
|
||||
# load wavetracker files
|
||||
time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||
powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
|
||||
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||
# time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||
# freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||
# powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
|
||||
# idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||
# ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||
|
||||
# load config file
|
||||
config = ConfLoader("chirpdetector_conf.yml")
|
||||
|
||||
# set time window # <------------------------ Iterate through windows here
|
||||
window_duration = config.window * data.samplerate
|
||||
window_overlap = config.overlap * data.samplerate
|
||||
window_edge = config.edge * data.samplerate
|
||||
window_duration = config.window * data.raw_rate
|
||||
window_overlap = config.overlap * data.raw_rate
|
||||
window_edge = config.edge * data.raw_rate
|
||||
|
||||
# check if window duration is even
|
||||
if window_duration % 2 == 0:
|
||||
@ -165,11 +167,11 @@ def main(datapath: str) -> None:
|
||||
else:
|
||||
raise ValueError("Window overlap must be even.")
|
||||
|
||||
raw_time = np.arange(data.shape[0]) / data.samplerate
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
||||
dt = 60 * data.samplerate
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
dt = 60 * data.raw_rate
|
||||
|
||||
window_starts = np.arange(
|
||||
t0,
|
||||
@ -182,31 +184,31 @@ def main(datapath: str) -> None:
|
||||
for start_index in window_starts[:nwindows]:
|
||||
|
||||
# make t0 and dt
|
||||
t0 = start_index / data.samplerate
|
||||
dt = window_duration / data.samplerate
|
||||
t0 = start_index / data.raw_rate
|
||||
dt = window_duration / data.raw_rate
|
||||
|
||||
# set index window
|
||||
stop_index = start_index + window_duration
|
||||
|
||||
# t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
||||
# dt = 60
|
||||
# start_index = t0 * data.samplerate
|
||||
# stop_index = (t0 + dt) * data.samplerate
|
||||
# start_index = t0 * data.raw_rate
|
||||
# stop_index = (t0 + dt) * data.raw_rate
|
||||
|
||||
# iterate through all fish
|
||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||
for i, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])[:2]):
|
||||
|
||||
# get indices for time array in time window
|
||||
window_index = np.arange(len(idx))[
|
||||
(ident == track_id) & (time[idx] >= t0) & (
|
||||
time[idx] <= (t0 + dt))
|
||||
window_index = np.arange(len(data.idx))[
|
||||
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
|
||||
data.time[data.idx] <= (t0 + dt))
|
||||
]
|
||||
|
||||
# get tracked frequencies and their times
|
||||
freq_temp = freq[window_index]
|
||||
powers_temp = powers[window_index, :]
|
||||
freq_temp = data.freq[window_index]
|
||||
powers_temp = data.powers[window_index, :]
|
||||
# time_temp = time[idx[window_index]]
|
||||
track_samplerate = np.mean(1 / np.diff(time))
|
||||
track_samplerate = np.mean(1 / np.diff(data.time))
|
||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||
|
||||
# check if tracked data available in this window
|
||||
@ -229,7 +231,7 @@ def main(datapath: str) -> None:
|
||||
for i, electrode in enumerate(best_electrodes):
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
data_oi = data.raw[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
@ -256,56 +258,56 @@ def main(datapath: str) -> None:
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
data_oi[:, electrode], data.raw_rate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on broad signal
|
||||
broad_baseline = bandpass_filter(
|
||||
data_oi[:, electrode],
|
||||
data.samplerate,
|
||||
data.raw_rate,
|
||||
lowf=np.mean(freq_temp)-5,
|
||||
highf=np.mean(freq_temp)+100
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on narrow signal
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
baseline, data.raw_rate
|
||||
)
|
||||
|
||||
# compute envelopes
|
||||
baseline_envelope = envelope(
|
||||
baseline, data.samplerate, config.envelope_cutoff)
|
||||
baseline, data.raw_rate, config.envelope_cutoff)
|
||||
search_envelope = envelope(
|
||||
search, data.samplerate, config.envelope_cutoff)
|
||||
search, data.raw_rate, config.envelope_cutoff)
|
||||
|
||||
# highpass filter envelopes
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope,
|
||||
data.samplerate,
|
||||
data.raw_rate,
|
||||
config.envelope_highpass_cutoff
|
||||
)
|
||||
|
||||
baseline_envelope = np.abs(baseline_envelope)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope,
|
||||
# data.samplerate,
|
||||
# data.raw_rate,
|
||||
# config.envelope_highpass_cutoff
|
||||
# )
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope),
|
||||
data.samplerate,
|
||||
data.raw_rate,
|
||||
config.envelope_envelope_cutoff
|
||||
)
|
||||
|
||||
# search_envelope = bandpass_filter(
|
||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||
# search_envelope, data.raw_rate, lowf=lowf, highf=highf)
|
||||
|
||||
# bandpass filter the instantaneous
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq,
|
||||
data.samplerate,
|
||||
data.raw_rate,
|
||||
lowf=config.instantaneous_lowf,
|
||||
highf=config.instantaneous_highf
|
||||
)
|
||||
@ -325,9 +327,9 @@ def main(datapath: str) -> None:
|
||||
search_envelope = search_envelope[valid]
|
||||
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(window_edge) / data.samplerate
|
||||
valid_t0 = int(window_edge) / data.raw_rate
|
||||
valid_t1 = baseline_freq_time[-1] - \
|
||||
(int(window_edge) / data.samplerate)
|
||||
(int(window_edge) / data.raw_rate)
|
||||
|
||||
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
@ -368,7 +370,7 @@ def main(datapath: str) -> None:
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(
|
||||
axs[0, i], data_oi[:, electrode], data.samplerate, t0)
|
||||
axs[0, i], data_oi[:, electrode], data.raw_rate, t0)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
|
@ -37,12 +37,13 @@ class LoadData:
|
||||
|
||||
# load raw data
|
||||
self.file = os.path.join(datapath, "traces-grid1.raw")
|
||||
self.data = DataLoader(self.file, 60.0, 0, channel=-1)
|
||||
self.samplerate = self.data.samplerate
|
||||
self.raw = DataLoader(self.file, 60.0, 0, channel=-1)
|
||||
self.raw_rate = self.raw.samplerate
|
||||
|
||||
# load wavetracker files
|
||||
self.time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||
self.freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||
self.powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
|
||||
self.idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
|
||||
|
Loading…
Reference in New Issue
Block a user