plot works

This commit is contained in:
weygoldt 2023-01-18 17:02:57 +01:00
parent 9422af9fb0
commit 501172f30d
2 changed files with 330 additions and 169 deletions

View File

@ -1,4 +1,5 @@
from itertools import combinations, compress
from dataclasses import dataclass
import numpy as np
from IPython import embed
@ -11,13 +12,116 @@ from sklearn.preprocessing import normalize
from modules.filters import bandpass_filter, envelope, highpass_filter
from modules.filehandling import ConfLoader, LoadData
from modules.datahandling import flatten, purge_duplicates
from modules.datahandling import flatten, purge_duplicates, group_timestamps
from modules.plotstyle import PlotStyle
from modules.logger import makeLogger
logger = makeLogger(__name__)
ps = PlotStyle()
@dataclass
class PlotBuffer:
t0: float
dt: float
track_id: float
electrode: int
data: LoadData
time: np.ndarray
baseline: np.ndarray
baseline_envelope: np.ndarray
baseline_peaks: np.ndarray
search: np.ndarray
search_envelope: np.ndarray
search_peaks: np.ndarray
frequency_time: np.ndarray
frequency: np.ndarray
frequency_filtered: np.ndarray
frequency_peaks: np.ndarray
def plot_buffer(self, chirps) -> None:
logger.debug("Starting plotting")
# make data for plotting
# get index of track data in this time window
window_idx = np.arange(len(self.data.idx))[
(self.data.ident == self.track_id) & (self.data.time[self.data.idx] >= self.t0) & (
self.data.time[self.data.idx] <= (self.t0 + self.dt))
]
# get tracked frequencies and their times
freq_temp = self.data.freq[window_idx]
# time_temp = self.data.times[window_idx]
# get indices on raw data
start_idx = self.t0 * self.data.raw_rate
window_duration = self.dt * self.data.raw_rate
stop_idx = start_idx + window_duration
# get raw data
data_oi = self.data.raw[start_idx:stop_idx, self.electrode]
fig, axs = plt.subplots(
7,
1,
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
)
# plot spectrogram
plot_spectrogram(axs[0], data_oi, self.data.raw_rate, self.t0)
# plot baseline instantaneos frequency
axs[1].plot(self.frequency_time, self.frequency)
# plot waveform of filtered signal
axs[2].plot(self.time, self.baseline, c=ps.green)
# plot waveform of filtered search signal
axs[3].plot(self.time, self.search)
# plot filtered and rectified envelope
axs[4].plot(self.time, self.baseline_envelope)
axs[4].scatter(
(self.time)[self.baseline_peaks],
self.baseline_envelope[self.baseline_peaks],
c=ps.red,
)
# plot envelope of search signal
axs[5].plot(self.time, self.search_envelope)
axs[5].scatter(
(self.time)[self.search_peaks],
self.search_envelope[self.search_peaks],
c=ps.red,
)
# plot filtered instantaneous frequency
axs[6].plot(self.frequency_time, self.frequency_filtered)
axs[6].scatter(
self.frequency_time[self.frequency_peaks],
self.frequency_filtered[self.frequency_peaks],
c=ps.red,
)
axs[6].set_xlabel("Time [s]")
axs[0].set_title("Spectrogram")
axs[1].set_title("Fitered baseline instanenous frequency")
axs[2].set_title("Fitered baseline")
axs[3].set_title("Fitered above")
axs[4].set_title("Filtered envelope of baseline envelope")
axs[5].set_title("Search envelope")
axs[6].set_title(
"Filtered absolute instantaneous frequency")
plt.show()
def instantaneos_frequency(
signal: np.ndarray, samplerate: int
) -> tuple[np.ndarray, np.ndarray]:
@ -78,6 +182,9 @@ def plot_spectrogram(axis, signal: np.ndarray, samplerate: float, t0: float) ->
t0 : float
Start time of the signal.
"""
logger.debug("Plotting spectrogram")
# compute spectrogram
spec_power, spec_freqs, spec_times = spectrogram(
signal,
@ -137,7 +244,9 @@ def double_bandpass(
return (filtered_baseline, filtered_search_freq)
def main(datapath: str) -> None:
def main(datapath: str, plot: str) -> None:
assert plot in ["save", "show", "false"]
# load raw file
data = LoadData(datapath)
@ -165,9 +274,12 @@ def main(datapath: str) -> None:
# make time array for raw data
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
# good chirp times for data: 2022-06-02-10_00
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
dt = 60 * data.raw_rate
# # good chirp times for data: 2022-06-02-10_00
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
# dt = 60 * data.raw_rate
t0 = 0
dt = data.raw.shape[0]
# generate starting points of rolling window
window_starts = np.arange(
@ -177,15 +289,17 @@ def main(datapath: str) -> None:
dtype=int
)
# ask how many windows should be calulated
nwindows = int(
input("How many windows should be calculated (integer number)? "))
# # ask how many windows should be calulated
# nwindows = int(
# input("How many windows should be calculated (integer number)? "))
# ititialize lists to store data
chirps = []
fish_ids = []
for st, start_index in enumerate(window_starts[: nwindows]):
for st, start_index in enumerate(window_starts):
logger.debug(f"Processing window {st} of {len(window_starts)}")
# make t0 and dt
t0 = start_index / data.raw_rate
@ -212,6 +326,8 @@ def main(datapath: str) -> None:
# iterate through all fish
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
logger.debug(f"Processing track {tr} of {len(track_ids)}")
print(f"Track ID: {track_id}")
# get index of track data in this time window
@ -233,15 +349,6 @@ def main(datapath: str) -> None:
if len(freq_temp) < expected_duration * 0.9:
continue
fig, axs = plt.subplots(
7,
config.number_electrodes,
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
)
# get best electrode
best_electrodes = np.argsort(np.nanmean(
powers_temp, axis=0))[-config.number_electrodes:]
@ -258,7 +365,7 @@ def main(datapath: str) -> None:
check_track_ids = track_ids[(median_freq > search_window[0]) & (
median_freq < search_window[-1])]
# iterate through theses tracks
# iterate through theses tracks
if check_track_ids.size != 0:
for j, check_track_id in enumerate(check_track_ids):
@ -325,7 +432,10 @@ def main(datapath: str) -> None:
# iterate through electrodes
for el, electrode in enumerate(best_electrodes):
print(el)
logger.debug(
f"Processing electrode {el} of {len(best_electrodes)}")
# load region of interest of raw data file
data_oi = data.raw[start_index:stop_index, :]
time_oi = raw_time[start_index:stop_index]
@ -420,7 +530,7 @@ def main(datapath: str) -> None:
baseline_envelope = normalize([baseline_envelope])[0]
search_envelope = normalize([search_envelope])[0]
inst_freq_filtered = normalize([inst_freq_filtered])[0]
inst_freq_filtered = normalize([np.abs(inst_freq_filtered)])[0]
# PEAK DETECTION ----------------------------------------------
@ -428,7 +538,7 @@ def main(datapath: str) -> None:
prominence = np.percentile(
baseline_envelope, config.baseline_prominence_percentile)
baseline_peaks, _ = find_peaks(
np.abs(baseline_envelope), prominence=prominence)
baseline_envelope, prominence=prominence)
# detect peaks search_envelope
prominence = np.percentile(
@ -442,81 +552,80 @@ def main(datapath: str) -> None:
config.instantaneous_prominence_percentile
)
inst_freq_peaks, _ = find_peaks(
np.abs(inst_freq_filtered),
inst_freq_filtered,
prominence=prominence
)
# # SAVE DATA ---------------------------------------------------
# PLOT --------------------------------------------------------
# plot spectrogram
plot_spectrogram(
axs[0, el], data_oi[:, electrode], data.raw_rate, t0)
# plot baseline instantaneos frequency
axs[1, el].plot(baseline_freq_time, baseline_freq -
np.median(baseline_freq))
# plot waveform of filtered signal
axs[2, el].plot(time_oi, baseline, c=ps.green)
# plot broad filtered baseline
axs[2, el].plot(
time_oi,
broad_baseline,
)
# plot narrow filtered baseline envelope
axs[2, el].plot(
time_oi,
baseline_envelope_unfiltered,
c=ps.red
)
# plot waveform of filtered search signal
axs[3, el].plot(time_oi, search)
# plot envelope of search signal
axs[3, el].plot(
time_oi,
search_envelope,
c=ps.red
)
# plot filtered and rectified envelope
axs[4, el].plot(time_oi, baseline_envelope)
axs[4, el].scatter(
(time_oi)[baseline_peaks],
baseline_envelope[baseline_peaks],
c=ps.red,
)
# plot envelope of search signal
axs[5, el].plot(time_oi, search_envelope)
axs[5, el].scatter(
(time_oi)[search_peaks],
search_envelope[search_peaks],
c=ps.red,
)
# plot filtered instantaneous frequency
axs[6, el].plot(baseline_freq_time, np.abs(inst_freq_filtered))
axs[6, el].scatter(
baseline_freq_time[inst_freq_peaks],
np.abs(inst_freq_filtered)[inst_freq_peaks],
c=ps.red,
)
axs[6, el].set_xlabel("Time [s]")
axs[0, el].set_title("Spectrogram")
axs[1, el].set_title("Fitered baseline instanenous frequency")
axs[2, el].set_title("Fitered baseline")
axs[3, el].set_title("Fitered above")
axs[4, el].set_title("Filtered envelope of baseline envelope")
axs[5, el].set_title("Search envelope")
axs[6, el].set_title(
"Filtered absolute instantaneous frequency")
# # PLOT --------------------------------------------------------
# # plot spectrogram
# plot_spectrogram(
# axs[0, el], data_oi[:, electrode], data.raw_rate, t0)
# # plot baseline instantaneos frequency
# axs[1, el].plot(baseline_freq_time, baseline_freq -
# np.median(baseline_freq))
# # plot waveform of filtered signal
# axs[2, el].plot(time_oi, baseline, c=ps.green)
# # plot broad filtered baseline
# axs[2, el].plot(
# time_oi,
# broad_baseline,
# )
# # plot narrow filtered baseline envelope
# axs[2, el].plot(
# time_oi,
# baseline_envelope_unfiltered,
# c=ps.red
# )
# # plot waveform of filtered search signal
# axs[3, el].plot(time_oi, search)
# # plot envelope of search signal
# axs[3, el].plot(
# time_oi,
# search_envelope,
# c=ps.red
# )
# # plot filtered and rectified envelope
# axs[4, el].plot(time_oi, baseline_envelope)
# axs[4, el].scatter(
# (time_oi)[baseline_peaks],
# baseline_envelope[baseline_peaks],
# c=ps.red,
# )
# # plot envelope of search signal
# axs[5, el].plot(time_oi, search_envelope)
# axs[5, el].scatter(
# (time_oi)[search_peaks],
# search_envelope[search_peaks],
# c=ps.red,
# )
# # plot filtered instantaneous frequency
# axs[6, el].plot(baseline_freq_time, np.abs(inst_freq_filtered))
# axs[6, el].scatter(
# baseline_freq_time[inst_freq_peaks],
# np.abs(inst_freq_filtered)[inst_freq_peaks],
# c=ps.red,
# )
# axs[6, el].set_xlabel("Time [s]")
# axs[0, el].set_title("Spectrogram")
# axs[1, el].set_title("Fitered baseline instanenous frequency")
# axs[2, el].set_title("Fitered baseline")
# axs[3, el].set_title("Fitered above")
# axs[4, el].set_title("Filtered envelope of baseline envelope")
# axs[5, el].set_title("Search envelope")
# axs[6, el].set_title(
# "Filtered absolute instantaneous frequency")
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
@ -556,7 +665,7 @@ def main(datapath: str) -> None:
current_chirps = []
bool_timestamps = np.ones_like(timestamps, dtype=bool)
for bo, tt in enumerate(timestamps):
if bool_timestamps[bo] == False:
if bool_timestamps[bo] is False:
continue
cm = timestamps_idx[(timestamps >= tt) & (
timestamps <= tt + config.chirp_window_threshold)]
@ -566,87 +675,141 @@ def main(datapath: str) -> None:
bool_timestamps[cm] = False
# for checking if there are chirps on multiple electrodes
if len(current_chirps) == 0:
continue
chirps_electrodes.append(current_chirps)
for ct in current_chirps:
axs[0, el].axvline(ct, color='r', lw=1)
# for ct in current_chirps:
# axs[0, el].axvline(ct, color='r', lw=1)
# axs[0, el].scatter(
# baseline_freq_time[inst_freq_peaks],
# np.ones_like(baseline_freq_time[inst_freq_peaks]) * 600,
# c=ps.red,
# )
# axs[0, el].scatter(
# (time_oi)[search_peaks],
# np.ones_like((time_oi)[search_peaks]) * 600,
# c=ps.red,
# )
# axs[0, el].scatter(
# (time_oi)[baseline_peaks],
# np.ones_like((time_oi)[baseline_peaks]) * 600,
# c=ps.red,
# )
if (el == config.number_electrodes - 1) & \
(len(current_chirps) > 0) & \
(plot in ["show", "save"]):
logger.debug("Detected chirp, ititialize buffer ...")
# save data to Buffer
buffer = PlotBuffer(
t0=t0,
dt=dt,
electrode=electrode,
track_id=track_id,
data=data,
time=time_oi,
baseline=baseline,
baseline_envelope=baseline_envelope,
baseline_peaks=baseline_peaks,
search=search,
search_envelope=search_envelope,
search_peaks=search_peaks,
frequency_time=baseline_freq_time,
frequency=baseline_freq,
frequency_filtered=inst_freq_filtered,
frequency_peaks=inst_freq_peaks,
)
axs[0, el].scatter(
baseline_freq_time[inst_freq_peaks],
np.ones_like(baseline_freq_time[inst_freq_peaks]) * 600,
c=ps.red,
)
axs[0, el].scatter(
(time_oi)[search_peaks],
np.ones_like((time_oi)[search_peaks]) * 600,
c=ps.red,
)
logger.debug("Buffer initialized!")
axs[0, el].scatter(
(time_oi)[baseline_peaks],
np.ones_like((time_oi)[baseline_peaks]) * 600,
c=ps.red,
)
logger.debug(
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
# continue if no chirps for current fish
# make one array
chirps_electrodes = np.concatenate(chirps_electrodes)
# chirps_electrodes = np.concatenate(chirps_electrodes)
# make shure they are numpy arrays
chirps_electrodes = np.asarray(chirps_electrodes)
electrodes_of_chirps = np.asarray(electrodes_of_chirps)
# sort them
sort_chirps_electrodes = chirps_electrodes[np.argsort(
chirps_electrodes)]
sort_electrodes = electrodes_of_chirps[np.argsort(
chirps_electrodes)]
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
# make index vector
index_vector = np.arange(len(sort_chirps_electrodes))
# make it more than only two electrodes for the search after chirps
combinations_best_elctrodes = list(
combinations(range(3), 2))
the_real_chirps = []
for chirp_index, seoc in enumerate(sort_chirps_electrodes):
if bool_vector[chirp_index] == False:
continue
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
chirps_unique = []
for combination in combinations_best_elctrodes:
if set(combination).issubset(sort_electrodes[cm]):
chirps_unique.append(
np.mean(sort_chirps_electrodes[cm]))
the_real_chirps.append(np.mean(chirps_unique))
"""
if set([0,1]).issubset(sort_electrodes[cm]):
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
elif set([1,0]).issubset(sort_electrodes[cm]):
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
elif set([0,2]).issubset(sort_electrodes[cm]):
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
elif set([1,2]).issubset(sort_electrodes[cm]):
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
"""
bool_vector[cm] = False
# electrodes_of_chirps = np.asarray(electrodes_of_chirps)
# # sort them
# sort_chirps_electrodes = chirps_electrodes[np.argsort(
# chirps_electrodes)]
# sort_electrodes = electrodes_of_chirps[np.argsort(
# chirps_electrodes)]
# bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
# # make index vector
# index_vector = np.arange(len(sort_chirps_electrodes))
# # make it more than only two electrodes for the search after chirps
# combinations_best_elctrodes = list(
# combinations(range(3), 2))
if len(chirps_electrodes) == 0:
continue
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
# for chirp_index, seoc in enumerate(sort_chirps_electrodes):
# if bool_vector[chirp_index] is False:
# continue
# cm = index_vector[(sort_chirps_electrodes >= seoc) & (
# sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
# chirps_unique = []
# for combination in combinations_best_elctrodes:
# if set(combination).issubset(sort_electrodes[cm]):
# chirps_unique.append(
# np.mean(sort_chirps_electrodes[cm]))
# the_real_chirps.append(np.mean(chirps_unique))
# """
# if set([0,1]).issubset(sort_electrodes[cm]):
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
# elif set([1,0]).issubset(sort_electrodes[cm]):
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
# elif set([0,2]).issubset(sort_electrodes[cm]):
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
# elif set([1,2]).issubset(sort_electrodes[cm]):
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
# """
# bool_vector[cm] = False
chirps.append(the_real_chirps)
fish_ids.append(track_id)
for ct in the_real_chirps:
axs[0, el].axvline(ct, color='b', lw=1)
# for ct in the_real_chirps:
# axs[0, el].axvline(ct, color='b', lw=1)
plt.close()
fig, ax = plt.subplots()
t0 = (3 * 60 * 60 + 6 * 60 + 43.5)
data_oi = data.raw[window_starts[0]:window_starts[-1] + int(dt*data.raw_rate), 10]
plot_spectrogram(ax, data_oi, data.raw_rate, t0)
chirps_concat = np.concatenate(chirps)
for ch in chirps_concat:
ax. axvline(ch, color='b', lw=1)
logger.debug('Found %d chirps, starting plotting ... ' %
len(the_real_chirps))
if len(the_real_chirps) > 0:
try:
buffer.plot_buffer(the_real_chirps)
except NameError:
pass
else:
try:
del buffer
except NameError:
pass
# fig, ax = plt.subplots()
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5)
# data_oi = data.raw[window_starts[0]:window_starts[-1] + int(dt*data.raw_rate), 10]
# plot_spectrogram(ax, data_oi, data.raw_rate, t0)
# chirps_concat = np.concatenate(chirps)
# for ch in chirps_concat:
# ax. axvline(ch, color='b', lw=1)
chirps_new = []
chirps_ids = []
@ -667,9 +830,7 @@ def main(datapath: str) -> None:
purged_chirps.extend(list(tr_chirps_purged))
purged_chirps_ids.extend(list(np.ones_like(tr_chirps_purged)*tr))
embed()
if __name__ == "__main__":
datapath = "../data/2022-06-02-10_00/"
main(datapath)
main(datapath, plot="show")

View File

@ -17,13 +17,13 @@ def makeLogger(name: str):
# create stream handler for terminal output
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
console_handler.setLevel(logging.DEBUG)
# create script specific logger
logger = logging.getLogger(name)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
logger.setLevel(logging.DEBUG)
return logger