plot works
This commit is contained in:
parent
9422af9fb0
commit
501172f30d
@ -1,4 +1,5 @@
|
||||
from itertools import combinations, compress
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
@ -11,13 +12,116 @@ from sklearn.preprocessing import normalize
|
||||
|
||||
from modules.filters import bandpass_filter, envelope, highpass_filter
|
||||
from modules.filehandling import ConfLoader, LoadData
|
||||
from modules.datahandling import flatten, purge_duplicates
|
||||
from modules.datahandling import flatten, purge_duplicates, group_timestamps
|
||||
from modules.plotstyle import PlotStyle
|
||||
from modules.logger import makeLogger
|
||||
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
ps = PlotStyle()
|
||||
|
||||
|
||||
@dataclass
|
||||
class PlotBuffer:
|
||||
t0: float
|
||||
dt: float
|
||||
track_id: float
|
||||
electrode: int
|
||||
data: LoadData
|
||||
|
||||
time: np.ndarray
|
||||
baseline: np.ndarray
|
||||
baseline_envelope: np.ndarray
|
||||
baseline_peaks: np.ndarray
|
||||
search: np.ndarray
|
||||
search_envelope: np.ndarray
|
||||
search_peaks: np.ndarray
|
||||
|
||||
frequency_time: np.ndarray
|
||||
frequency: np.ndarray
|
||||
frequency_filtered: np.ndarray
|
||||
frequency_peaks: np.ndarray
|
||||
|
||||
def plot_buffer(self, chirps) -> None:
|
||||
|
||||
logger.debug("Starting plotting")
|
||||
|
||||
# make data for plotting
|
||||
|
||||
# get index of track data in this time window
|
||||
window_idx = np.arange(len(self.data.idx))[
|
||||
(self.data.ident == self.track_id) & (self.data.time[self.data.idx] >= self.t0) & (
|
||||
self.data.time[self.data.idx] <= (self.t0 + self.dt))
|
||||
]
|
||||
|
||||
# get tracked frequencies and their times
|
||||
freq_temp = self.data.freq[window_idx]
|
||||
# time_temp = self.data.times[window_idx]
|
||||
|
||||
# get indices on raw data
|
||||
start_idx = self.t0 * self.data.raw_rate
|
||||
window_duration = self.dt * self.data.raw_rate
|
||||
stop_idx = start_idx + window_duration
|
||||
|
||||
# get raw data
|
||||
data_oi = self.data.raw[start_idx:stop_idx, self.electrode]
|
||||
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
1,
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
)
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0], data_oi, self.data.raw_rate, self.t0)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1].plot(self.frequency_time, self.frequency)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2].plot(self.time, self.baseline, c=ps.green)
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3].plot(self.time, self.search)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4].plot(self.time, self.baseline_envelope)
|
||||
axs[4].scatter(
|
||||
(self.time)[self.baseline_peaks],
|
||||
self.baseline_envelope[self.baseline_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[5].plot(self.time, self.search_envelope)
|
||||
axs[5].scatter(
|
||||
(self.time)[self.search_peaks],
|
||||
self.search_envelope[self.search_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
axs[6].plot(self.frequency_time, self.frequency_filtered)
|
||||
axs[6].scatter(
|
||||
self.frequency_time[self.frequency_peaks],
|
||||
self.frequency_filtered[self.frequency_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
axs[6].set_xlabel("Time [s]")
|
||||
axs[0].set_title("Spectrogram")
|
||||
axs[1].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2].set_title("Fitered baseline")
|
||||
axs[3].set_title("Fitered above")
|
||||
axs[4].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5].set_title("Search envelope")
|
||||
axs[6].set_title(
|
||||
"Filtered absolute instantaneous frequency")
|
||||
plt.show()
|
||||
|
||||
|
||||
def instantaneos_frequency(
|
||||
signal: np.ndarray, samplerate: int
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
@ -78,6 +182,9 @@ def plot_spectrogram(axis, signal: np.ndarray, samplerate: float, t0: float) ->
|
||||
t0 : float
|
||||
Start time of the signal.
|
||||
"""
|
||||
|
||||
logger.debug("Plotting spectrogram")
|
||||
|
||||
# compute spectrogram
|
||||
spec_power, spec_freqs, spec_times = spectrogram(
|
||||
signal,
|
||||
@ -137,7 +244,9 @@ def double_bandpass(
|
||||
return (filtered_baseline, filtered_search_freq)
|
||||
|
||||
|
||||
def main(datapath: str) -> None:
|
||||
def main(datapath: str, plot: str) -> None:
|
||||
|
||||
assert plot in ["save", "show", "false"]
|
||||
|
||||
# load raw file
|
||||
data = LoadData(datapath)
|
||||
@ -165,9 +274,12 @@ def main(datapath: str) -> None:
|
||||
# make time array for raw data
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
dt = 60 * data.raw_rate
|
||||
# # good chirp times for data: 2022-06-02-10_00
|
||||
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
# dt = 60 * data.raw_rate
|
||||
|
||||
t0 = 0
|
||||
dt = data.raw.shape[0]
|
||||
|
||||
# generate starting points of rolling window
|
||||
window_starts = np.arange(
|
||||
@ -177,15 +289,17 @@ def main(datapath: str) -> None:
|
||||
dtype=int
|
||||
)
|
||||
|
||||
# ask how many windows should be calulated
|
||||
nwindows = int(
|
||||
input("How many windows should be calculated (integer number)? "))
|
||||
# # ask how many windows should be calulated
|
||||
# nwindows = int(
|
||||
# input("How many windows should be calculated (integer number)? "))
|
||||
|
||||
# ititialize lists to store data
|
||||
chirps = []
|
||||
fish_ids = []
|
||||
|
||||
for st, start_index in enumerate(window_starts[: nwindows]):
|
||||
for st, start_index in enumerate(window_starts):
|
||||
|
||||
logger.debug(f"Processing window {st} of {len(window_starts)}")
|
||||
|
||||
# make t0 and dt
|
||||
t0 = start_index / data.raw_rate
|
||||
@ -212,6 +326,8 @@ def main(datapath: str) -> None:
|
||||
# iterate through all fish
|
||||
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||
|
||||
logger.debug(f"Processing track {tr} of {len(track_ids)}")
|
||||
|
||||
print(f"Track ID: {track_id}")
|
||||
|
||||
# get index of track data in this time window
|
||||
@ -233,15 +349,6 @@ def main(datapath: str) -> None:
|
||||
if len(freq_temp) < expected_duration * 0.9:
|
||||
continue
|
||||
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
config.number_electrodes,
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
)
|
||||
|
||||
# get best electrode
|
||||
best_electrodes = np.argsort(np.nanmean(
|
||||
powers_temp, axis=0))[-config.number_electrodes:]
|
||||
@ -258,7 +365,7 @@ def main(datapath: str) -> None:
|
||||
check_track_ids = track_ids[(median_freq > search_window[0]) & (
|
||||
median_freq < search_window[-1])]
|
||||
|
||||
# iterate through theses tracks
|
||||
# iterate through theses tracks
|
||||
if check_track_ids.size != 0:
|
||||
|
||||
for j, check_track_id in enumerate(check_track_ids):
|
||||
@ -325,7 +432,10 @@ def main(datapath: str) -> None:
|
||||
|
||||
# iterate through electrodes
|
||||
for el, electrode in enumerate(best_electrodes):
|
||||
print(el)
|
||||
|
||||
logger.debug(
|
||||
f"Processing electrode {el} of {len(best_electrodes)}")
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data.raw[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
@ -420,7 +530,7 @@ def main(datapath: str) -> None:
|
||||
|
||||
baseline_envelope = normalize([baseline_envelope])[0]
|
||||
search_envelope = normalize([search_envelope])[0]
|
||||
inst_freq_filtered = normalize([inst_freq_filtered])[0]
|
||||
inst_freq_filtered = normalize([np.abs(inst_freq_filtered)])[0]
|
||||
|
||||
# PEAK DETECTION ----------------------------------------------
|
||||
|
||||
@ -428,7 +538,7 @@ def main(datapath: str) -> None:
|
||||
prominence = np.percentile(
|
||||
baseline_envelope, config.baseline_prominence_percentile)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
np.abs(baseline_envelope), prominence=prominence)
|
||||
baseline_envelope, prominence=prominence)
|
||||
|
||||
# detect peaks search_envelope
|
||||
prominence = np.percentile(
|
||||
@ -442,81 +552,80 @@ def main(datapath: str) -> None:
|
||||
config.instantaneous_prominence_percentile
|
||||
)
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
np.abs(inst_freq_filtered),
|
||||
inst_freq_filtered,
|
||||
prominence=prominence
|
||||
)
|
||||
|
||||
# # SAVE DATA ---------------------------------------------------
|
||||
|
||||
# PLOT --------------------------------------------------------
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(
|
||||
axs[0, el], data_oi[:, electrode], data.raw_rate, t0)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1, el].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq))
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, el].plot(time_oi, baseline, c=ps.green)
|
||||
|
||||
# plot broad filtered baseline
|
||||
axs[2, el].plot(
|
||||
time_oi,
|
||||
broad_baseline,
|
||||
)
|
||||
|
||||
# plot narrow filtered baseline envelope
|
||||
axs[2, el].plot(
|
||||
time_oi,
|
||||
baseline_envelope_unfiltered,
|
||||
c=ps.red
|
||||
)
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, el].plot(time_oi, search)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[3, el].plot(
|
||||
time_oi,
|
||||
search_envelope,
|
||||
c=ps.red
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, el].plot(time_oi, baseline_envelope)
|
||||
axs[4, el].scatter(
|
||||
(time_oi)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[5, el].plot(time_oi, search_envelope)
|
||||
axs[5, el].scatter(
|
||||
(time_oi)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
axs[6, el].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
axs[6, el].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
|
||||
axs[6, el].set_xlabel("Time [s]")
|
||||
axs[0, el].set_title("Spectrogram")
|
||||
axs[1, el].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2, el].set_title("Fitered baseline")
|
||||
axs[3, el].set_title("Fitered above")
|
||||
axs[4, el].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5, el].set_title("Search envelope")
|
||||
axs[6, el].set_title(
|
||||
"Filtered absolute instantaneous frequency")
|
||||
# # PLOT --------------------------------------------------------
|
||||
|
||||
# # plot spectrogram
|
||||
# plot_spectrogram(
|
||||
# axs[0, el], data_oi[:, electrode], data.raw_rate, t0)
|
||||
|
||||
# # plot baseline instantaneos frequency
|
||||
|
||||
# axs[1, el].plot(baseline_freq_time, baseline_freq -
|
||||
# np.median(baseline_freq))
|
||||
|
||||
# # plot waveform of filtered signal
|
||||
# axs[2, el].plot(time_oi, baseline, c=ps.green)
|
||||
|
||||
# # plot broad filtered baseline
|
||||
# axs[2, el].plot(
|
||||
# time_oi,
|
||||
# broad_baseline,
|
||||
# )
|
||||
|
||||
# # plot narrow filtered baseline envelope
|
||||
# axs[2, el].plot(
|
||||
# time_oi,
|
||||
# baseline_envelope_unfiltered,
|
||||
# c=ps.red
|
||||
# )
|
||||
|
||||
# # plot waveform of filtered search signal
|
||||
# axs[3, el].plot(time_oi, search)
|
||||
|
||||
# # plot envelope of search signal
|
||||
# axs[3, el].plot(
|
||||
# time_oi,
|
||||
# search_envelope,
|
||||
# c=ps.red
|
||||
# )
|
||||
|
||||
# # plot filtered and rectified envelope
|
||||
# axs[4, el].plot(time_oi, baseline_envelope)
|
||||
# axs[4, el].scatter(
|
||||
# (time_oi)[baseline_peaks],
|
||||
# baseline_envelope[baseline_peaks],
|
||||
# c=ps.red,
|
||||
# )
|
||||
|
||||
# # plot envelope of search signal
|
||||
# axs[5, el].plot(time_oi, search_envelope)
|
||||
# axs[5, el].scatter(
|
||||
# (time_oi)[search_peaks],
|
||||
# search_envelope[search_peaks],
|
||||
# c=ps.red,
|
||||
# )
|
||||
|
||||
# # plot filtered instantaneous frequency
|
||||
# axs[6, el].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
# axs[6, el].scatter(
|
||||
# baseline_freq_time[inst_freq_peaks],
|
||||
# np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
# c=ps.red,
|
||||
# )
|
||||
|
||||
# axs[6, el].set_xlabel("Time [s]")
|
||||
# axs[0, el].set_title("Spectrogram")
|
||||
# axs[1, el].set_title("Fitered baseline instanenous frequency")
|
||||
# axs[2, el].set_title("Fitered baseline")
|
||||
# axs[3, el].set_title("Fitered above")
|
||||
# axs[4, el].set_title("Filtered envelope of baseline envelope")
|
||||
# axs[5, el].set_title("Search envelope")
|
||||
# axs[6, el].set_title(
|
||||
# "Filtered absolute instantaneous frequency")
|
||||
|
||||
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
|
||||
|
||||
@ -556,7 +665,7 @@ def main(datapath: str) -> None:
|
||||
current_chirps = []
|
||||
bool_timestamps = np.ones_like(timestamps, dtype=bool)
|
||||
for bo, tt in enumerate(timestamps):
|
||||
if bool_timestamps[bo] == False:
|
||||
if bool_timestamps[bo] is False:
|
||||
continue
|
||||
cm = timestamps_idx[(timestamps >= tt) & (
|
||||
timestamps <= tt + config.chirp_window_threshold)]
|
||||
@ -566,87 +675,141 @@ def main(datapath: str) -> None:
|
||||
bool_timestamps[cm] = False
|
||||
|
||||
# for checking if there are chirps on multiple electrodes
|
||||
if len(current_chirps) == 0:
|
||||
continue
|
||||
|
||||
chirps_electrodes.append(current_chirps)
|
||||
|
||||
for ct in current_chirps:
|
||||
axs[0, el].axvline(ct, color='r', lw=1)
|
||||
# for ct in current_chirps:
|
||||
# axs[0, el].axvline(ct, color='r', lw=1)
|
||||
|
||||
# axs[0, el].scatter(
|
||||
# baseline_freq_time[inst_freq_peaks],
|
||||
# np.ones_like(baseline_freq_time[inst_freq_peaks]) * 600,
|
||||
# c=ps.red,
|
||||
# )
|
||||
# axs[0, el].scatter(
|
||||
# (time_oi)[search_peaks],
|
||||
# np.ones_like((time_oi)[search_peaks]) * 600,
|
||||
# c=ps.red,
|
||||
# )
|
||||
|
||||
# axs[0, el].scatter(
|
||||
# (time_oi)[baseline_peaks],
|
||||
# np.ones_like((time_oi)[baseline_peaks]) * 600,
|
||||
# c=ps.red,
|
||||
# )
|
||||
|
||||
if (el == config.number_electrodes - 1) & \
|
||||
(len(current_chirps) > 0) & \
|
||||
(plot in ["show", "save"]):
|
||||
|
||||
logger.debug("Detected chirp, ititialize buffer ...")
|
||||
|
||||
# save data to Buffer
|
||||
buffer = PlotBuffer(
|
||||
t0=t0,
|
||||
dt=dt,
|
||||
electrode=electrode,
|
||||
track_id=track_id,
|
||||
data=data,
|
||||
time=time_oi,
|
||||
baseline=baseline,
|
||||
baseline_envelope=baseline_envelope,
|
||||
baseline_peaks=baseline_peaks,
|
||||
search=search,
|
||||
search_envelope=search_envelope,
|
||||
search_peaks=search_peaks,
|
||||
frequency_time=baseline_freq_time,
|
||||
frequency=baseline_freq,
|
||||
frequency_filtered=inst_freq_filtered,
|
||||
frequency_peaks=inst_freq_peaks,
|
||||
)
|
||||
|
||||
axs[0, el].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.ones_like(baseline_freq_time[inst_freq_peaks]) * 600,
|
||||
c=ps.red,
|
||||
)
|
||||
axs[0, el].scatter(
|
||||
(time_oi)[search_peaks],
|
||||
np.ones_like((time_oi)[search_peaks]) * 600,
|
||||
c=ps.red,
|
||||
)
|
||||
logger.debug("Buffer initialized!")
|
||||
|
||||
axs[0, el].scatter(
|
||||
(time_oi)[baseline_peaks],
|
||||
np.ones_like((time_oi)[baseline_peaks]) * 600,
|
||||
c=ps.red,
|
||||
)
|
||||
logger.debug(
|
||||
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
|
||||
|
||||
# continue if no chirps for current fish
|
||||
|
||||
# make one array
|
||||
chirps_electrodes = np.concatenate(chirps_electrodes)
|
||||
# chirps_electrodes = np.concatenate(chirps_electrodes)
|
||||
|
||||
# make shure they are numpy arrays
|
||||
chirps_electrodes = np.asarray(chirps_electrodes)
|
||||
electrodes_of_chirps = np.asarray(electrodes_of_chirps)
|
||||
# sort them
|
||||
sort_chirps_electrodes = chirps_electrodes[np.argsort(
|
||||
chirps_electrodes)]
|
||||
sort_electrodes = electrodes_of_chirps[np.argsort(
|
||||
chirps_electrodes)]
|
||||
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
||||
# make index vector
|
||||
index_vector = np.arange(len(sort_chirps_electrodes))
|
||||
# make it more than only two electrodes for the search after chirps
|
||||
combinations_best_elctrodes = list(
|
||||
combinations(range(3), 2))
|
||||
|
||||
the_real_chirps = []
|
||||
for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
||||
if bool_vector[chirp_index] == False:
|
||||
continue
|
||||
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
||||
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
||||
|
||||
chirps_unique = []
|
||||
for combination in combinations_best_elctrodes:
|
||||
if set(combination).issubset(sort_electrodes[cm]):
|
||||
chirps_unique.append(
|
||||
np.mean(sort_chirps_electrodes[cm]))
|
||||
|
||||
the_real_chirps.append(np.mean(chirps_unique))
|
||||
|
||||
"""
|
||||
if set([0,1]).issubset(sort_electrodes[cm]):
|
||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
elif set([1,0]).issubset(sort_electrodes[cm]):
|
||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
elif set([0,2]).issubset(sort_electrodes[cm]):
|
||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
elif set([1,2]).issubset(sort_electrodes[cm]):
|
||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
"""
|
||||
bool_vector[cm] = False
|
||||
# electrodes_of_chirps = np.asarray(electrodes_of_chirps)
|
||||
|
||||
# # sort them
|
||||
# sort_chirps_electrodes = chirps_electrodes[np.argsort(
|
||||
# chirps_electrodes)]
|
||||
# sort_electrodes = electrodes_of_chirps[np.argsort(
|
||||
# chirps_electrodes)]
|
||||
# bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
||||
|
||||
# # make index vector
|
||||
# index_vector = np.arange(len(sort_chirps_electrodes))
|
||||
|
||||
# # make it more than only two electrodes for the search after chirps
|
||||
# combinations_best_elctrodes = list(
|
||||
# combinations(range(3), 2))
|
||||
|
||||
if len(chirps_electrodes) == 0:
|
||||
continue
|
||||
|
||||
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
|
||||
|
||||
# for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
||||
# if bool_vector[chirp_index] is False:
|
||||
# continue
|
||||
# cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
||||
# sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
||||
|
||||
# chirps_unique = []
|
||||
# for combination in combinations_best_elctrodes:
|
||||
# if set(combination).issubset(sort_electrodes[cm]):
|
||||
# chirps_unique.append(
|
||||
# np.mean(sort_chirps_electrodes[cm]))
|
||||
|
||||
# the_real_chirps.append(np.mean(chirps_unique))
|
||||
|
||||
# """
|
||||
# if set([0,1]).issubset(sort_electrodes[cm]):
|
||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
# elif set([1,0]).issubset(sort_electrodes[cm]):
|
||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
# elif set([0,2]).issubset(sort_electrodes[cm]):
|
||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
# elif set([1,2]).issubset(sort_electrodes[cm]):
|
||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||
# """
|
||||
# bool_vector[cm] = False
|
||||
|
||||
chirps.append(the_real_chirps)
|
||||
fish_ids.append(track_id)
|
||||
|
||||
for ct in the_real_chirps:
|
||||
axs[0, el].axvline(ct, color='b', lw=1)
|
||||
# for ct in the_real_chirps:
|
||||
# axs[0, el].axvline(ct, color='b', lw=1)
|
||||
|
||||
plt.close()
|
||||
fig, ax = plt.subplots()
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5)
|
||||
data_oi = data.raw[window_starts[0]:window_starts[-1] + int(dt*data.raw_rate), 10]
|
||||
plot_spectrogram(ax, data_oi, data.raw_rate, t0)
|
||||
chirps_concat = np.concatenate(chirps)
|
||||
for ch in chirps_concat:
|
||||
ax. axvline(ch, color='b', lw=1)
|
||||
logger.debug('Found %d chirps, starting plotting ... ' %
|
||||
len(the_real_chirps))
|
||||
if len(the_real_chirps) > 0:
|
||||
try:
|
||||
buffer.plot_buffer(the_real_chirps)
|
||||
except NameError:
|
||||
pass
|
||||
else:
|
||||
try:
|
||||
del buffer
|
||||
except NameError:
|
||||
pass
|
||||
|
||||
# fig, ax = plt.subplots()
|
||||
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5)
|
||||
# data_oi = data.raw[window_starts[0]:window_starts[-1] + int(dt*data.raw_rate), 10]
|
||||
# plot_spectrogram(ax, data_oi, data.raw_rate, t0)
|
||||
# chirps_concat = np.concatenate(chirps)
|
||||
# for ch in chirps_concat:
|
||||
# ax. axvline(ch, color='b', lw=1)
|
||||
|
||||
chirps_new = []
|
||||
chirps_ids = []
|
||||
@ -667,9 +830,7 @@ def main(datapath: str) -> None:
|
||||
purged_chirps.extend(list(tr_chirps_purged))
|
||||
purged_chirps_ids.extend(list(np.ones_like(tr_chirps_purged)*tr))
|
||||
|
||||
embed()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
datapath = "../data/2022-06-02-10_00/"
|
||||
main(datapath)
|
||||
main(datapath, plot="show")
|
||||
|
@ -17,13 +17,13 @@ def makeLogger(name: str):
|
||||
# create stream handler for terminal output
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(console_formatter)
|
||||
console_handler.setLevel(logging.INFO)
|
||||
console_handler.setLevel(logging.DEBUG)
|
||||
|
||||
# create script specific logger
|
||||
logger = logging.getLogger(name)
|
||||
logger.addHandler(file_handler)
|
||||
logger.addHandler(console_handler)
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
return logger
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user