electrode loop and adjusted plot
This commit is contained in:
parent
6fb5dd560a
commit
49b77ddb77
@ -217,21 +217,10 @@ def main(datapath: str) -> None:
|
|||||||
# start_index = t0 * data.samplerate
|
# start_index = t0 * data.samplerate
|
||||||
# stop_index = (t0 + dt) * data.samplerate
|
# stop_index = (t0 + dt) * data.samplerate
|
||||||
|
|
||||||
fig, axs = plt.subplots(
|
|
||||||
7,
|
|
||||||
2,
|
|
||||||
figsize=(20 / 2.54, 12 / 2.54),
|
|
||||||
constrained_layout=True,
|
|
||||||
sharex=True,
|
|
||||||
sharey='row',
|
|
||||||
)
|
|
||||||
|
|
||||||
# iterate through all fish
|
# iterate through all fish
|
||||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||||
|
|
||||||
# load region of interest of raw data file
|
|
||||||
data_oi = data[start_index:stop_index, :]
|
|
||||||
time_oi = raw_time[start_index:stop_index]
|
|
||||||
|
|
||||||
# get indices for time array in time window
|
# get indices for time array in time window
|
||||||
window_index = np.arange(len(idx))[
|
window_index = np.arange(len(idx))[
|
||||||
@ -250,194 +239,208 @@ def main(datapath: str) -> None:
|
|||||||
if len(freq_temp) < expected_duration * 0.9:
|
if len(freq_temp) < expected_duration * 0.9:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# get best electrode
|
# Create plot (three electrodes per fish)
|
||||||
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
fig, axs = plt.subplots(
|
||||||
|
7,
|
||||||
# <------------------------------------------ Iterate through electrodes
|
3,
|
||||||
|
figsize=(20 / 2.54, 12 / 2.54),
|
||||||
# plot wavetracker tracks to spectrogram
|
constrained_layout=True,
|
||||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
sharex=True,
|
||||||
# here
|
sharey='row',
|
||||||
|
|
||||||
# # get indices for time array in time window
|
|
||||||
# window_index = np.arange(len(idx))[
|
|
||||||
# (ident == track_id) &
|
|
||||||
# (time[idx] >= t0) &
|
|
||||||
# (time[idx] <= (t0 + dt))
|
|
||||||
# ]
|
|
||||||
|
|
||||||
# freq_temp = freq[window_index]
|
|
||||||
# time_temp = time[idx[window_index]]
|
|
||||||
|
|
||||||
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
|
||||||
# axs[0].set_ylim(500, 1000)
|
|
||||||
|
|
||||||
# track_id = ids
|
|
||||||
|
|
||||||
# frequency where second filter filters
|
|
||||||
search_freq = 50
|
|
||||||
|
|
||||||
# filter baseline and above
|
|
||||||
baseline, search = double_bandpass(
|
|
||||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
|
||||||
)
|
|
||||||
|
|
||||||
# compute instantaneous frequency on broad signal
|
|
||||||
broad_baseline = bandpass_filter(
|
|
||||||
data_oi[:, electrode],
|
|
||||||
data.samplerate,
|
|
||||||
lowf=np.mean(freq_temp)-5,
|
|
||||||
highf=np.mean(freq_temp)+100
|
|
||||||
)
|
|
||||||
# compute instantaneous frequency on narrow signal
|
|
||||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
|
||||||
baseline, data.samplerate
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# compute envelopes
|
# get best electrode
|
||||||
cutoff = 25
|
best_electrodes = np.argsort(np.nanmean(powers_temp, axis=0))[-3:]
|
||||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
|
||||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
|
||||||
|
|
||||||
# highpass filter envelopes
|
|
||||||
cutoff = 5
|
|
||||||
baseline_envelope = highpass_filter(
|
|
||||||
baseline_envelope, data.samplerate, cutoff=cutoff
|
|
||||||
)
|
|
||||||
baseline_envelope = np.abs(baseline_envelope)
|
|
||||||
# search_envelope = highpass_filter(
|
|
||||||
# search_envelope, data.samplerate, cutoff=cutoff)
|
|
||||||
|
|
||||||
# envelopes of filtered envelope of filtered baseline
|
|
||||||
# baseline_envelope = envelope(
|
|
||||||
# np.abs(baseline_envelope), data.samplerate, cutoff
|
|
||||||
# )
|
|
||||||
|
|
||||||
# search_envelope = bandpass_filter(
|
|
||||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
|
||||||
|
|
||||||
# bandpass filter the instantaneous
|
|
||||||
inst_freq_filtered = bandpass_filter(
|
|
||||||
baseline_freq, data.samplerate, lowf=15, highf=8000
|
|
||||||
)
|
|
||||||
|
|
||||||
# CUT OFF OVERLAP -------------------------------------------------
|
|
||||||
|
|
||||||
# cut off first and last 0.5 * overlap at start and end
|
|
||||||
valid = np.arange(
|
|
||||||
int(0.5 * window_overlap), len(baseline_envelope) -
|
|
||||||
int(0.5 * window_overlap)
|
|
||||||
)
|
|
||||||
baseline_envelope = baseline_envelope[valid]
|
|
||||||
search_envelope = search_envelope[valid]
|
|
||||||
|
|
||||||
# get inst freq valid snippet
|
|
||||||
valid_t0 = int(0.5 * window_overlap) / data.samplerate
|
|
||||||
valid_t1 = baseline_freq_time[-1] - \
|
|
||||||
(int(0.5 * window_overlap) / data.samplerate)
|
|
||||||
|
|
||||||
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
|
||||||
baseline_freq_time <= valid_t1)]
|
|
||||||
|
|
||||||
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
|
|
||||||
baseline_freq_time <= valid_t1)]
|
|
||||||
|
|
||||||
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
|
||||||
baseline_freq_time <= valid_t1)] + t0
|
|
||||||
|
|
||||||
# overwrite raw time to valid region
|
|
||||||
time_oi = time_oi[valid]
|
|
||||||
baseline = baseline[valid]
|
|
||||||
broad_baseline = broad_baseline[valid]
|
|
||||||
search = search[valid]
|
|
||||||
|
|
||||||
# PEAK DETECTION --------------------------------------------------
|
|
||||||
|
|
||||||
# detect peaks baseline_enelope
|
|
||||||
prominence = np.percentile(baseline_envelope, 90)
|
|
||||||
baseline_peaks, _ = find_peaks(
|
|
||||||
np.abs(baseline_envelope), prominence=prominence)
|
|
||||||
|
|
||||||
# detect peaks search_envelope
|
|
||||||
prominence = np.percentile(search_envelope, 75)
|
|
||||||
search_peaks, _ = find_peaks(
|
|
||||||
search_envelope, prominence=prominence)
|
|
||||||
|
|
||||||
# detect peaks inst_freq_filtered
|
|
||||||
prominence = 2
|
|
||||||
inst_freq_peaks, _ = find_peaks(
|
|
||||||
np.abs(inst_freq_filtered), prominence=prominence)
|
|
||||||
|
|
||||||
# PLOT ------------------------------------------------------------
|
|
||||||
|
|
||||||
# plot spectrogram
|
|
||||||
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate, t0)
|
|
||||||
|
|
||||||
# plot baseline instantaneos frequency
|
|
||||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
|
||||||
np.median(baseline_freq), marker=".")
|
|
||||||
|
|
||||||
# plot waveform of filtered signal
|
|
||||||
axs[2, i].plot(time_oi, baseline, c="k")
|
|
||||||
|
|
||||||
# plot narrow filtered baseline
|
|
||||||
axs[2, i].plot(
|
|
||||||
time_oi,
|
|
||||||
baseline_envelope,
|
|
||||||
c="orange",
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot broad filtered baseline
|
|
||||||
axs[2, i].plot(
|
|
||||||
time_oi,
|
|
||||||
broad_baseline,
|
|
||||||
c="green",
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot waveform of filtered search signal
|
|
||||||
axs[3, i].plot(time_oi, search)
|
|
||||||
|
|
||||||
# plot envelope of search signal
|
|
||||||
axs[3, i].plot(
|
|
||||||
time_oi,
|
|
||||||
search_envelope,
|
|
||||||
c="orange",
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot filtered and rectified envelope
|
|
||||||
axs[4, i].plot(time_oi, baseline_envelope)
|
|
||||||
axs[4, i].scatter(
|
|
||||||
(time_oi)[baseline_peaks],
|
|
||||||
baseline_envelope[baseline_peaks],
|
|
||||||
c="red",
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot envelope of search signal
|
|
||||||
axs[5, i].plot(time_oi, search_envelope)
|
|
||||||
axs[5, i].scatter(
|
|
||||||
(time_oi)[search_peaks],
|
|
||||||
search_envelope[search_peaks],
|
|
||||||
c="red",
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot filtered instantaneous frequency
|
|
||||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
|
||||||
axs[6, i].scatter(
|
|
||||||
baseline_freq_time[inst_freq_peaks],
|
|
||||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
|
||||||
c="red",
|
|
||||||
)
|
|
||||||
|
|
||||||
axs[6, i].set_xlabel("Time [s]")
|
|
||||||
axs[0, i].set_title("Spectrogram")
|
|
||||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
|
||||||
axs[2, i].set_title("Fitered baseline")
|
|
||||||
axs[3, i].set_title("Fitered above")
|
|
||||||
axs[4, i].set_title("Filtered envelope of baseline envelope")
|
|
||||||
axs[5, i].set_title("Search envelope")
|
|
||||||
axs[6, i].set_title("Filtered absolute instantaneous frequency")
|
|
||||||
|
|
||||||
plt.show()
|
# <------------------------------------------ Iterate through electrodes
|
||||||
|
for e, electrode in enumerate(best_electrodes):
|
||||||
|
|
||||||
|
# load region of interest of raw data file
|
||||||
|
data_oi = data[start_index:stop_index, :]
|
||||||
|
time_oi = raw_time[start_index:stop_index]
|
||||||
|
# plot wavetracker tracks to spectrogram
|
||||||
|
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||||
|
# here
|
||||||
|
|
||||||
|
# # get indices for time array in time window
|
||||||
|
# window_index = np.arange(len(idx))[
|
||||||
|
# (ident == track_id) &
|
||||||
|
# (time[idx] >= t0) &
|
||||||
|
# (time[idx] <= (t0 + dt))
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# freq_temp = freq[window_index]
|
||||||
|
# time_temp = time[idx[window_index]]
|
||||||
|
|
||||||
|
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
||||||
|
# axs[0].set_ylim(500, 1000)
|
||||||
|
|
||||||
|
# track_id = ids
|
||||||
|
|
||||||
|
# frequency where second filter filters
|
||||||
|
search_freq = 50
|
||||||
|
|
||||||
|
# filter baseline and above
|
||||||
|
baseline, search = double_bandpass(
|
||||||
|
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||||
|
)
|
||||||
|
|
||||||
|
# compute instantaneous frequency on broad signal
|
||||||
|
broad_baseline = bandpass_filter(
|
||||||
|
data_oi[:, electrode],
|
||||||
|
data.samplerate,
|
||||||
|
lowf=np.mean(freq_temp)-5,
|
||||||
|
highf=np.mean(freq_temp)+100
|
||||||
|
)
|
||||||
|
# compute instantaneous frequency on narrow signal
|
||||||
|
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||||
|
baseline, data.samplerate
|
||||||
|
)
|
||||||
|
|
||||||
|
# compute envelopes
|
||||||
|
cutoff = 25
|
||||||
|
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||||
|
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||||
|
|
||||||
|
# highpass filter envelopes
|
||||||
|
cutoff = 5
|
||||||
|
baseline_envelope = highpass_filter(
|
||||||
|
baseline_envelope, data.samplerate, cutoff=cutoff
|
||||||
|
)
|
||||||
|
baseline_envelope = np.abs(baseline_envelope)
|
||||||
|
# search_envelope = highpass_filter(
|
||||||
|
# search_envelope, data.samplerate, cutoff=cutoff)
|
||||||
|
|
||||||
|
# envelopes of filtered envelope of filtered baseline
|
||||||
|
# baseline_envelope = envelope(
|
||||||
|
# np.abs(baseline_envelope), data.samplerate, cutoff
|
||||||
|
# )
|
||||||
|
|
||||||
|
# search_envelope = bandpass_filter(
|
||||||
|
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||||
|
|
||||||
|
# bandpass filter the instantaneous
|
||||||
|
inst_freq_filtered = bandpass_filter(
|
||||||
|
baseline_freq, data.samplerate, lowf=15, highf=8000
|
||||||
|
)
|
||||||
|
|
||||||
|
# CUT OFF OVERLAP -------------------------------------------------
|
||||||
|
|
||||||
|
# cut off first and last 0.5 * overlap at start and end
|
||||||
|
valid = np.arange(
|
||||||
|
int(0.5 * window_overlap), len(baseline_envelope) -
|
||||||
|
int(0.5 * window_overlap)
|
||||||
|
)
|
||||||
|
baseline_envelope = baseline_envelope[valid]
|
||||||
|
search_envelope = search_envelope[valid]
|
||||||
|
|
||||||
|
# get inst freq valid snippet
|
||||||
|
valid_t0 = int(0.5 * window_overlap) / data.samplerate
|
||||||
|
valid_t1 = baseline_freq_time[-1] - \
|
||||||
|
(int(0.5 * window_overlap) / data.samplerate)
|
||||||
|
|
||||||
|
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||||
|
baseline_freq_time <= valid_t1)]
|
||||||
|
|
||||||
|
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
|
||||||
|
baseline_freq_time <= valid_t1)]
|
||||||
|
|
||||||
|
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
||||||
|
baseline_freq_time <= valid_t1)] + t0
|
||||||
|
|
||||||
|
# overwrite raw time to valid region
|
||||||
|
time_oi = time_oi[valid]
|
||||||
|
baseline = baseline[valid]
|
||||||
|
broad_baseline = broad_baseline[valid]
|
||||||
|
search = search[valid]
|
||||||
|
|
||||||
|
# PEAK DETECTION --------------------------------------------------
|
||||||
|
|
||||||
|
# detect peaks baseline_enelope
|
||||||
|
prominence = np.percentile(baseline_envelope, 90)
|
||||||
|
baseline_peaks, _ = find_peaks(
|
||||||
|
np.abs(baseline_envelope), prominence=prominence)
|
||||||
|
|
||||||
|
# detect peaks search_envelope
|
||||||
|
prominence = np.percentile(search_envelope, 75)
|
||||||
|
search_peaks, _ = find_peaks(
|
||||||
|
search_envelope, prominence=prominence)
|
||||||
|
|
||||||
|
# detect peaks inst_freq_filtered
|
||||||
|
prominence = 2
|
||||||
|
inst_freq_peaks, _ = find_peaks(
|
||||||
|
np.abs(inst_freq_filtered), prominence=prominence)
|
||||||
|
|
||||||
|
# PLOT ------------------------------------------------------------
|
||||||
|
|
||||||
|
# plot spectrogram
|
||||||
|
plot_spectrogram(axs[0, e], data_oi[:, electrode], data.samplerate, t0)
|
||||||
|
|
||||||
|
# plot baseline instantaneos frequency
|
||||||
|
axs[1, e].plot(baseline_freq_time, baseline_freq -
|
||||||
|
np.median(baseline_freq), marker=".")
|
||||||
|
|
||||||
|
# plot waveform of filtered signal
|
||||||
|
axs[2, e].plot(time_oi, baseline, c="k")
|
||||||
|
|
||||||
|
# plot narrow filtered baseline
|
||||||
|
axs[2, e].plot(
|
||||||
|
time_oi,
|
||||||
|
baseline_envelope,
|
||||||
|
c="orange",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot broad filtered baseline
|
||||||
|
axs[2, e].plot(
|
||||||
|
time_oi,
|
||||||
|
broad_baseline,
|
||||||
|
c="green",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot waveform of filtered search signal
|
||||||
|
axs[3, e].plot(time_oi, search)
|
||||||
|
|
||||||
|
# plot envelope of search signal
|
||||||
|
axs[3, e].plot(
|
||||||
|
time_oi,
|
||||||
|
search_envelope,
|
||||||
|
c="orange",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot filtered and rectified envelope
|
||||||
|
axs[4, e].plot(time_oi, baseline_envelope)
|
||||||
|
axs[4, e].scatter(
|
||||||
|
(time_oi)[baseline_peaks],
|
||||||
|
baseline_envelope[baseline_peaks],
|
||||||
|
c="red",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot envelope of search signal
|
||||||
|
axs[5, e].plot(time_oi, search_envelope)
|
||||||
|
axs[5, e].scatter(
|
||||||
|
(time_oi)[search_peaks],
|
||||||
|
search_envelope[search_peaks],
|
||||||
|
c="red",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot filtered instantaneous frequency
|
||||||
|
axs[6, e].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||||
|
axs[6, e].scatter(
|
||||||
|
baseline_freq_time[inst_freq_peaks],
|
||||||
|
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||||
|
c="red",
|
||||||
|
)
|
||||||
|
|
||||||
|
axs[6, e].set_xlabel("Time [s]")
|
||||||
|
axs[0, e].set_title("Spectrogram")
|
||||||
|
axs[1, e].set_title("Fitered baseline instanenous frequency")
|
||||||
|
axs[2, e].set_title("Fitered baseline")
|
||||||
|
axs[3, e].set_title("Fitered above")
|
||||||
|
axs[4, e].set_title("Filtered envelope of baseline envelope")
|
||||||
|
axs[5, e].set_title("Search envelope")
|
||||||
|
axs[6, e].set_title("Filtered absolute instantaneous frequency")
|
||||||
|
fig.suptitle('Fish ID %i' %track_id)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
Reference in New Issue
Block a user