electrode loop and adjusted plot

This commit is contained in:
sprause 2023-01-13 13:51:21 +01:00
parent 6fb5dd560a
commit 49b77ddb77

View File

@ -217,21 +217,10 @@ def main(datapath: str) -> None:
# start_index = t0 * data.samplerate
# stop_index = (t0 + dt) * data.samplerate
fig, axs = plt.subplots(
7,
2,
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
)
# iterate through all fish
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
# load region of interest of raw data file
data_oi = data[start_index:stop_index, :]
time_oi = raw_time[start_index:stop_index]
# get indices for time array in time window
window_index = np.arange(len(idx))[
@ -250,194 +239,208 @@ def main(datapath: str) -> None:
if len(freq_temp) < expected_duration * 0.9:
continue
# get best electrode
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
# <------------------------------------------ Iterate through electrodes
# plot wavetracker tracks to spectrogram
# for track_id in np.unique(ident): # <---------- Find freq gaps later
# here
# # get indices for time array in time window
# window_index = np.arange(len(idx))[
# (ident == track_id) &
# (time[idx] >= t0) &
# (time[idx] <= (t0 + dt))
# ]
# freq_temp = freq[window_index]
# time_temp = time[idx[window_index]]
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
# axs[0].set_ylim(500, 1000)
# track_id = ids
# frequency where second filter filters
search_freq = 50
# filter baseline and above
baseline, search = double_bandpass(
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
)
# compute instantaneous frequency on broad signal
broad_baseline = bandpass_filter(
data_oi[:, electrode],
data.samplerate,
lowf=np.mean(freq_temp)-5,
highf=np.mean(freq_temp)+100
)
# compute instantaneous frequency on narrow signal
baseline_freq_time, baseline_freq = instantaneos_frequency(
baseline, data.samplerate
# Create plot (three electrodes per fish)
fig, axs = plt.subplots(
7,
3,
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
)
# compute envelopes
cutoff = 25
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
search_envelope = envelope(search, data.samplerate, cutoff)
# highpass filter envelopes
cutoff = 5
baseline_envelope = highpass_filter(
baseline_envelope, data.samplerate, cutoff=cutoff
)
baseline_envelope = np.abs(baseline_envelope)
# search_envelope = highpass_filter(
# search_envelope, data.samplerate, cutoff=cutoff)
# envelopes of filtered envelope of filtered baseline
# baseline_envelope = envelope(
# np.abs(baseline_envelope), data.samplerate, cutoff
# )
# search_envelope = bandpass_filter(
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
# bandpass filter the instantaneous
inst_freq_filtered = bandpass_filter(
baseline_freq, data.samplerate, lowf=15, highf=8000
)
# CUT OFF OVERLAP -------------------------------------------------
# cut off first and last 0.5 * overlap at start and end
valid = np.arange(
int(0.5 * window_overlap), len(baseline_envelope) -
int(0.5 * window_overlap)
)
baseline_envelope = baseline_envelope[valid]
search_envelope = search_envelope[valid]
# get inst freq valid snippet
valid_t0 = int(0.5 * window_overlap) / data.samplerate
valid_t1 = baseline_freq_time[-1] - \
(int(0.5 * window_overlap) / data.samplerate)
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)]
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)]
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)] + t0
# overwrite raw time to valid region
time_oi = time_oi[valid]
baseline = baseline[valid]
broad_baseline = broad_baseline[valid]
search = search[valid]
# PEAK DETECTION --------------------------------------------------
# detect peaks baseline_enelope
prominence = np.percentile(baseline_envelope, 90)
baseline_peaks, _ = find_peaks(
np.abs(baseline_envelope), prominence=prominence)
# detect peaks search_envelope
prominence = np.percentile(search_envelope, 75)
search_peaks, _ = find_peaks(
search_envelope, prominence=prominence)
# detect peaks inst_freq_filtered
prominence = 2
inst_freq_peaks, _ = find_peaks(
np.abs(inst_freq_filtered), prominence=prominence)
# PLOT ------------------------------------------------------------
# plot spectrogram
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate, t0)
# plot baseline instantaneos frequency
axs[1, i].plot(baseline_freq_time, baseline_freq -
np.median(baseline_freq), marker=".")
# plot waveform of filtered signal
axs[2, i].plot(time_oi, baseline, c="k")
# plot narrow filtered baseline
axs[2, i].plot(
time_oi,
baseline_envelope,
c="orange",
)
# plot broad filtered baseline
axs[2, i].plot(
time_oi,
broad_baseline,
c="green",
)
# plot waveform of filtered search signal
axs[3, i].plot(time_oi, search)
# plot envelope of search signal
axs[3, i].plot(
time_oi,
search_envelope,
c="orange",
)
# plot filtered and rectified envelope
axs[4, i].plot(time_oi, baseline_envelope)
axs[4, i].scatter(
(time_oi)[baseline_peaks],
baseline_envelope[baseline_peaks],
c="red",
)
# plot envelope of search signal
axs[5, i].plot(time_oi, search_envelope)
axs[5, i].scatter(
(time_oi)[search_peaks],
search_envelope[search_peaks],
c="red",
)
# plot filtered instantaneous frequency
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
axs[6, i].scatter(
baseline_freq_time[inst_freq_peaks],
np.abs(inst_freq_filtered)[inst_freq_peaks],
c="red",
)
axs[6, i].set_xlabel("Time [s]")
axs[0, i].set_title("Spectrogram")
axs[1, i].set_title("Fitered baseline instanenous frequency")
axs[2, i].set_title("Fitered baseline")
axs[3, i].set_title("Fitered above")
axs[4, i].set_title("Filtered envelope of baseline envelope")
axs[5, i].set_title("Search envelope")
axs[6, i].set_title("Filtered absolute instantaneous frequency")
# get best electrode
best_electrodes = np.argsort(np.nanmean(powers_temp, axis=0))[-3:]
plt.show()
# <------------------------------------------ Iterate through electrodes
for e, electrode in enumerate(best_electrodes):
# load region of interest of raw data file
data_oi = data[start_index:stop_index, :]
time_oi = raw_time[start_index:stop_index]
# plot wavetracker tracks to spectrogram
# for track_id in np.unique(ident): # <---------- Find freq gaps later
# here
# # get indices for time array in time window
# window_index = np.arange(len(idx))[
# (ident == track_id) &
# (time[idx] >= t0) &
# (time[idx] <= (t0 + dt))
# ]
# freq_temp = freq[window_index]
# time_temp = time[idx[window_index]]
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
# axs[0].set_ylim(500, 1000)
# track_id = ids
# frequency where second filter filters
search_freq = 50
# filter baseline and above
baseline, search = double_bandpass(
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
)
# compute instantaneous frequency on broad signal
broad_baseline = bandpass_filter(
data_oi[:, electrode],
data.samplerate,
lowf=np.mean(freq_temp)-5,
highf=np.mean(freq_temp)+100
)
# compute instantaneous frequency on narrow signal
baseline_freq_time, baseline_freq = instantaneos_frequency(
baseline, data.samplerate
)
# compute envelopes
cutoff = 25
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
search_envelope = envelope(search, data.samplerate, cutoff)
# highpass filter envelopes
cutoff = 5
baseline_envelope = highpass_filter(
baseline_envelope, data.samplerate, cutoff=cutoff
)
baseline_envelope = np.abs(baseline_envelope)
# search_envelope = highpass_filter(
# search_envelope, data.samplerate, cutoff=cutoff)
# envelopes of filtered envelope of filtered baseline
# baseline_envelope = envelope(
# np.abs(baseline_envelope), data.samplerate, cutoff
# )
# search_envelope = bandpass_filter(
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
# bandpass filter the instantaneous
inst_freq_filtered = bandpass_filter(
baseline_freq, data.samplerate, lowf=15, highf=8000
)
# CUT OFF OVERLAP -------------------------------------------------
# cut off first and last 0.5 * overlap at start and end
valid = np.arange(
int(0.5 * window_overlap), len(baseline_envelope) -
int(0.5 * window_overlap)
)
baseline_envelope = baseline_envelope[valid]
search_envelope = search_envelope[valid]
# get inst freq valid snippet
valid_t0 = int(0.5 * window_overlap) / data.samplerate
valid_t1 = baseline_freq_time[-1] - \
(int(0.5 * window_overlap) / data.samplerate)
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)]
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)]
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)] + t0
# overwrite raw time to valid region
time_oi = time_oi[valid]
baseline = baseline[valid]
broad_baseline = broad_baseline[valid]
search = search[valid]
# PEAK DETECTION --------------------------------------------------
# detect peaks baseline_enelope
prominence = np.percentile(baseline_envelope, 90)
baseline_peaks, _ = find_peaks(
np.abs(baseline_envelope), prominence=prominence)
# detect peaks search_envelope
prominence = np.percentile(search_envelope, 75)
search_peaks, _ = find_peaks(
search_envelope, prominence=prominence)
# detect peaks inst_freq_filtered
prominence = 2
inst_freq_peaks, _ = find_peaks(
np.abs(inst_freq_filtered), prominence=prominence)
# PLOT ------------------------------------------------------------
# plot spectrogram
plot_spectrogram(axs[0, e], data_oi[:, electrode], data.samplerate, t0)
# plot baseline instantaneos frequency
axs[1, e].plot(baseline_freq_time, baseline_freq -
np.median(baseline_freq), marker=".")
# plot waveform of filtered signal
axs[2, e].plot(time_oi, baseline, c="k")
# plot narrow filtered baseline
axs[2, e].plot(
time_oi,
baseline_envelope,
c="orange",
)
# plot broad filtered baseline
axs[2, e].plot(
time_oi,
broad_baseline,
c="green",
)
# plot waveform of filtered search signal
axs[3, e].plot(time_oi, search)
# plot envelope of search signal
axs[3, e].plot(
time_oi,
search_envelope,
c="orange",
)
# plot filtered and rectified envelope
axs[4, e].plot(time_oi, baseline_envelope)
axs[4, e].scatter(
(time_oi)[baseline_peaks],
baseline_envelope[baseline_peaks],
c="red",
)
# plot envelope of search signal
axs[5, e].plot(time_oi, search_envelope)
axs[5, e].scatter(
(time_oi)[search_peaks],
search_envelope[search_peaks],
c="red",
)
# plot filtered instantaneous frequency
axs[6, e].plot(baseline_freq_time, np.abs(inst_freq_filtered))
axs[6, e].scatter(
baseline_freq_time[inst_freq_peaks],
np.abs(inst_freq_filtered)[inst_freq_peaks],
c="red",
)
axs[6, e].set_xlabel("Time [s]")
axs[0, e].set_title("Spectrogram")
axs[1, e].set_title("Fitered baseline instanenous frequency")
axs[2, e].set_title("Fitered baseline")
axs[3, e].set_title("Fitered above")
axs[4, e].set_title("Filtered envelope of baseline envelope")
axs[5, e].set_title("Search envelope")
axs[6, e].set_title("Filtered absolute instantaneous frequency")
fig.suptitle('Fish ID %i' %track_id)
plt.show()
if __name__ == "__main__":