Merge branch 'master' into alex
This commit is contained in:
commit
41b75f1a68
@ -187,22 +187,9 @@ def main(datapath: str) -> None:
|
||||
# start_index = t0 * data.samplerate
|
||||
# stop_index = (t0 + dt) * data.samplerate
|
||||
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
2,
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
)
|
||||
|
||||
# iterate through all fish
|
||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
|
||||
# get indices for time array in time window
|
||||
window_index = np.arange(len(idx))[
|
||||
(ident == track_id) & (time[idx] >= t0) & (
|
||||
@ -220,213 +207,229 @@ def main(datapath: str) -> None:
|
||||
if len(freq_temp) < expected_duration * 0.9:
|
||||
continue
|
||||
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
config.electrodes,
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
)
|
||||
# get best electrode
|
||||
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
||||
best_electrodes = np.argsort(np.nanmean(
|
||||
powers_temp, axis=0))[-config.electrodes:]
|
||||
# <------------------------------------------ Iterate through electrodes
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||
# here
|
||||
|
||||
# # get indices for time array in time window
|
||||
# window_index = np.arange(len(idx))[
|
||||
# (ident == track_id) &
|
||||
# (time[idx] >= t0) &
|
||||
# (time[idx] <= (t0 + dt))
|
||||
# ]
|
||||
|
||||
# freq_temp = freq[window_index]
|
||||
# time_temp = time[idx[window_index]]
|
||||
|
||||
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
||||
# axs[0].set_ylim(500, 1000)
|
||||
|
||||
# track_id = ids
|
||||
|
||||
# frequency where second filter filters
|
||||
search_freq = 50
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on broad signal
|
||||
broad_baseline = bandpass_filter(
|
||||
data_oi[:, electrode],
|
||||
data.samplerate,
|
||||
lowf=np.mean(freq_temp)-5,
|
||||
highf=np.mean(freq_temp)+100
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on narrow signal
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
)
|
||||
|
||||
# compute envelopes
|
||||
baseline_envelope = envelope(
|
||||
baseline, data.samplerate, config.envelope_cutoff)
|
||||
search_envelope = envelope(
|
||||
search, data.samplerate, config.envelope_cutoff)
|
||||
|
||||
# highpass filter envelopes
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope,
|
||||
data.samplerate,
|
||||
config.envelope_highpass_cutoff
|
||||
)
|
||||
|
||||
baseline_envelope = np.abs(baseline_envelope)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope,
|
||||
# data.samplerate,
|
||||
# config.envelope_highpass_cutoff
|
||||
# )
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope),
|
||||
data.samplerate,
|
||||
config.envelope_envelope_cutoff
|
||||
)
|
||||
for i, electrode in enumerate(best_electrodes):
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||
# here
|
||||
|
||||
# # get indices for time array in time window
|
||||
# window_index = np.arange(len(idx))[
|
||||
# (ident == track_id) &
|
||||
# (time[idx] >= t0) &
|
||||
# (time[idx] <= (t0 + dt))
|
||||
# ]
|
||||
|
||||
# freq_temp = freq[window_index]
|
||||
# time_temp = time[idx[window_index]]
|
||||
|
||||
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
||||
# axs[0].set_ylim(500, 1000)
|
||||
|
||||
# track_id = ids
|
||||
|
||||
# frequency where second filter filters
|
||||
search_freq = 50
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on broad signal
|
||||
broad_baseline = bandpass_filter(
|
||||
data_oi[:, electrode],
|
||||
data.samplerate,
|
||||
lowf=np.mean(freq_temp)-5,
|
||||
highf=np.mean(freq_temp)+100
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on narrow signal
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
)
|
||||
|
||||
# compute envelopes
|
||||
baseline_envelope = envelope(
|
||||
baseline, data.samplerate, config.envelope_cutoff)
|
||||
search_envelope = envelope(
|
||||
search, data.samplerate, config.envelope_cutoff)
|
||||
|
||||
# highpass filter envelopes
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope,
|
||||
data.samplerate,
|
||||
config.envelope_highpass_cutoff
|
||||
)
|
||||
|
||||
baseline_envelope = np.abs(baseline_envelope)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope,
|
||||
# data.samplerate,
|
||||
# config.envelope_highpass_cutoff
|
||||
# )
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope),
|
||||
data.samplerate,
|
||||
config.envelope_envelope_cutoff
|
||||
)
|
||||
|
||||
# search_envelope = bandpass_filter(
|
||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||
|
||||
# bandpass filter the instantaneous
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq,
|
||||
data.samplerate,
|
||||
lowf=config.instantaneous_lowf,
|
||||
highf=config.instantaneous_highf
|
||||
)
|
||||
|
||||
# test taking the log of the envelopes
|
||||
# baseline_envelope = np.log(baseline_envelope)
|
||||
# search_envelope = np.log(search_envelope)
|
||||
|
||||
# CUT OFF OVERLAP -------------------------------------------------
|
||||
|
||||
# cut off first and last 0.5 * overlap at start and end
|
||||
valid = np.arange(
|
||||
int(window_overlap / 2), len(baseline_envelope) -
|
||||
int(window_overlap / 2)
|
||||
)
|
||||
baseline_envelope = baseline_envelope[valid]
|
||||
search_envelope = search_envelope[valid]
|
||||
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(window_overlap / 2) / data.samplerate
|
||||
valid_t1 = baseline_freq_time[-1] - \
|
||||
(int(window_overlap / 2) / data.samplerate)
|
||||
|
||||
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
|
||||
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
|
||||
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)] + t0
|
||||
|
||||
# overwrite raw time to valid region
|
||||
time_oi = time_oi[valid]
|
||||
baseline = baseline[valid]
|
||||
broad_baseline = broad_baseline[valid]
|
||||
search = search[valid]
|
||||
|
||||
# PEAK DETECTION --------------------------------------------------
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
prominence = np.percentile(
|
||||
baseline_envelope, config.baseline_prominence_percentile)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
np.abs(baseline_envelope), prominence=prominence)
|
||||
|
||||
# detect peaks search_envelope
|
||||
prominence = np.percentile(
|
||||
search_envelope, config.search_prominence_percentile)
|
||||
search_peaks, _ = find_peaks(
|
||||
search_envelope, prominence=prominence)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
prominence = np.percentile(
|
||||
inst_freq_filtered, config.instantaneous_prominence_percentile)
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
np.abs(inst_freq_filtered), prominence=prominence)
|
||||
|
||||
# PLOT ------------------------------------------------------------
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(
|
||||
axs[0, i], data_oi[:, electrode], data.samplerate, t0)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq), marker=".")
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, i].plot(time_oi, baseline, c="k")
|
||||
|
||||
# plot narrow filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot broad filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
broad_baseline,
|
||||
c="green",
|
||||
)
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, i].plot(time_oi, search)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[3, i].plot(
|
||||
time_oi,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, i].plot(time_oi, baseline_envelope)
|
||||
axs[4, i].scatter(
|
||||
(time_oi)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[5, i].plot(time_oi, search_envelope)
|
||||
axs[5, i].scatter(
|
||||
(time_oi)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
axs[6, i].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
axs[6, i].set_xlabel("Time [s]")
|
||||
axs[0, i].set_title("Spectrogram")
|
||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2, i].set_title("Fitered baseline")
|
||||
axs[3, i].set_title("Fitered above")
|
||||
axs[4, i].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5, i].set_title("Search envelope")
|
||||
axs[6, i].set_title("Filtered absolute instantaneous frequency")
|
||||
|
||||
plt.show()
|
||||
# bandpass filter the instantaneous
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq,
|
||||
data.samplerate,
|
||||
lowf=config.instantaneous_lowf,
|
||||
highf=config.instantaneous_highf
|
||||
)
|
||||
|
||||
# test taking the log of the envelopes
|
||||
# baseline_envelope = np.log(baseline_envelope)
|
||||
# search_envelope = np.log(search_envelope)
|
||||
|
||||
# CUT OFF OVERLAP -------------------------------------------------
|
||||
|
||||
# cut off first and last 0.5 * overlap at start and end
|
||||
valid = np.arange(
|
||||
int(window_overlap / 2), len(baseline_envelope) -
|
||||
int(window_overlap / 2)
|
||||
)
|
||||
baseline_envelope = baseline_envelope[valid]
|
||||
search_envelope = search_envelope[valid]
|
||||
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(window_overlap / 2) / data.samplerate
|
||||
valid_t1 = baseline_freq_time[-1] - \
|
||||
(int(window_overlap / 2) / data.samplerate)
|
||||
|
||||
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
|
||||
baseline_freq = baseline_freq[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)]
|
||||
|
||||
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)] + t0
|
||||
|
||||
# overwrite raw time to valid region
|
||||
time_oi = time_oi[valid]
|
||||
baseline = baseline[valid]
|
||||
broad_baseline = broad_baseline[valid]
|
||||
search = search[valid]
|
||||
|
||||
# PEAK DETECTION --------------------------------------------------
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
prominence = np.percentile(
|
||||
baseline_envelope, config.baseline_prominence_percentile)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
np.abs(baseline_envelope), prominence=prominence)
|
||||
|
||||
# detect peaks search_envelope
|
||||
prominence = np.percentile(
|
||||
search_envelope, config.search_prominence_percentile)
|
||||
search_peaks, _ = find_peaks(
|
||||
search_envelope, prominence=prominence)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
prominence = np.percentile(
|
||||
inst_freq_filtered, config.instantaneous_prominence_percentile)
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
np.abs(inst_freq_filtered), prominence=prominence)
|
||||
|
||||
# PLOT ------------------------------------------------------------
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(
|
||||
axs[0, i], data_oi[:, electrode], data.samplerate, t0)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq), marker=".")
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, i].plot(time_oi, baseline, c="k")
|
||||
|
||||
# plot narrow filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot broad filtered baseline
|
||||
axs[2, i].plot(
|
||||
time_oi,
|
||||
broad_baseline,
|
||||
c="green",
|
||||
)
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, i].plot(time_oi, search)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[3, i].plot(
|
||||
time_oi,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, i].plot(time_oi, baseline_envelope)
|
||||
axs[4, i].scatter(
|
||||
(time_oi)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
axs[5, i].plot(time_oi, search_envelope)
|
||||
axs[5, i].scatter(
|
||||
(time_oi)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
axs[6, i].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
axs[6, i].set_xlabel("Time [s]")
|
||||
axs[0, i].set_title("Spectrogram")
|
||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2, i].set_title("Fitered baseline")
|
||||
axs[3, i].set_title("Fitered above")
|
||||
axs[4, i].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5, i].set_title("Search envelope")
|
||||
axs[6, i].set_title(
|
||||
"Filtered absolute instantaneous frequency")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Duration and overlap of the analysis window in seconds
|
||||
window: 5
|
||||
overlap: 0.5
|
||||
overlap: 1
|
||||
edges: 0.25
|
||||
|
||||
# Number of electrodes to go over
|
||||
electrodes: 3
|
||||
|
Loading…
Reference in New Issue
Block a user