new algoplot
This commit is contained in:
parent
87127fb718
commit
41235c4188
@ -275,14 +275,15 @@ def main(dataroot):
|
||||
# loser_physicals_conv = acausal_kde1d(
|
||||
# loser_physicals[-1], kde_time, kernel_width)
|
||||
|
||||
ax[i].plot(kde_time, loser_offsets_conv/len(offsets))
|
||||
ax[i].plot(kde_time, loser_offsets_conv /
|
||||
len(offsets), lw=2, zorder=100)
|
||||
|
||||
ax[i].fill_between(
|
||||
kde_time,
|
||||
np.percentile(loser_offsets_boot[-1], 1, axis=0),
|
||||
np.percentile(loser_offsets_boot[-1], 99, axis=0),
|
||||
color=ps.white,
|
||||
alpha=0.5)
|
||||
alpha=0.4)
|
||||
|
||||
ax[i].plot(kde_time, np.median(loser_offsets_boot[-1], axis=0),
|
||||
color=ps.black, linewidth=2)
|
||||
@ -519,7 +520,7 @@ def main(dataroot):
|
||||
# loser_physicals_boot_quarts[2],
|
||||
# color=ps.gray,
|
||||
# alpha=0.5)
|
||||
plt.subplots_adjust(bottom=0.21)
|
||||
plt.subplots_adjust(bottom=0.21, top=0.93)
|
||||
plt.savefig('../poster/figs/kde.pdf')
|
||||
plt.show()
|
||||
|
||||
|
Binary file not shown.
@ -7,7 +7,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\begin{document}
|
||||
|
||||
\renewcommand{\baselinestretch}{1}
|
||||
\title{\parbox{1500pt}{Bypassing time-frequency uncertainty in the detection of transient communication signals in weakly electric fish}}
|
||||
\title{\parbox{1600pt}{Bypassing time-frequency uncertainty in the detection of transient communication signals in weakly electric fish}}
|
||||
\author{Sina Prause, Alexander Wendt, and Patrick Weygoldt}
|
||||
\institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen}
|
||||
\usetitlestyle[]{sampletitle}
|
||||
@ -17,7 +17,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\begin{columns}
|
||||
\column{0.4}
|
||||
\myblock[TranspBlock]{Introduction}{
|
||||
\textbf{Chirps} are the most common communication signals in weakly electric fish. They are characterized by \textbf{short frequency excursions} and are emitted during various social contexts. It is nearly impossible to reliably \textbf{detect and assign} chirps in freely interacting fish using only a Fourier transform. To overcome these limits, we developed a new method of \textbf{dynamic feature extraction} and classification.
|
||||
\textbf{Chirps} are the most common communication signals in weakly electric fish. They are characterized by \textbf{short frequency excursions} and are emitted during various social contexts. It is nearly impossible to reliably \textbf{detect and assign} chirps in freely interacting fish using only a Fourier transform. To overcome these limits, we developed a new method of \textbf{dynamic feature extraction} and classification.
|
||||
\vspace{1cm}
|
||||
\begin{tikzfigure}[]
|
||||
\label{griddrawing}
|
||||
@ -52,7 +52,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\item Experiment had a 3 hour long darkphase and a 3 hour long light phase.
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
|
||||
|
||||
|
||||
\noindent
|
||||
\begin{tikzfigure}[]
|
||||
|
Loading…
Reference in New Issue
Block a user