This commit is contained in:
weygoldt 2023-01-23 09:47:19 +01:00
commit 369f26123a

View File

@ -1,16 +1,19 @@
from pathlib import Path
import os
import numpy as np
import matplotlib.pyplot as plt
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
logger = makeLogger(__name__)
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
----------
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
behavior_type:
behavioral_category:
comment_start:
@ -20,23 +23,37 @@ class Behavior:
media_file:
observation_date:
observation_id:
start_s:
stop_s:
start_s: start time of the event in seconds
stop_s: stop time of the event in seconds
total_length:
"""
def __init__(self, datapath: str) -> None:
csv_file = str(sorted(Path(datapath).glob('**/*.csv'))[0])
self.dataframe = read_csv(csv_file, delimiter=',')
for key in self.dataframe:
if ' ' in key:
new_key = key.replace(' ', '_')
if '(' in new_key:
new_key = new_key.replace('(', '')
new_key = new_key.replace(')', '')
new_key = new_key.lower()
setattr(self, new_key, np.array(self.dataframe[key]))
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] # check if there are more than one csv file
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
if ' ' in key:
key = key.replace(' ', '_')
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
factor = 1.034141
shift = last_LED_t_BORIS - real_time_range * factor
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
"""
1 - chasing onset
2 - chasing offset
@ -64,12 +81,137 @@ temporal encpding needs to be corrected ... not exactly 25FPS.
behavior = data['Behavior']
"""
def correct_chasing_events(
category: np.ndarray,
timestamps: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
onset_ids = np.arange(
len(category))[category == 0]
offset_ids = np.arange(
len(category))[category == 1]
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
longer_array = onset_ids
shorter_array = offset_ids
logger.info(f'Onsets are greater than offsets by {len_diff}')
elif len(onset_ids) < len(offset_ids):
len_diff = len(offset_ids) - len(onset_ids)
longer_array = offset_ids
shorter_array = onset_ids
logger.info(f'Offsets are greater than offsets by {len_diff}')
elif len(onset_ids) == len(offset_ids):
logger.info('Chasing events are equal')
return category, timestamps
# Correct the wrong chasing events; delete double events
wrong_ids = []
for i in range(len(longer_array)-(len_diff+1)):
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
pass
else:
wrong_ids.append(longer_array[i])
longer_array = np.delete(longer_array, i)
category = np.delete(
category, wrong_ids)
timestamps = np.delete(
timestamps, wrong_ids)
return category, timestamps
def main(datapath: str):
# behabvior is pandas dataframe with all the data
behavior = Behavior(datapath)
# behavior is pandas dataframe with all the data
bh = Behavior(datapath)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
chirps = bh.chirps[np.argsort(bh.chirps)]
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
category = bh.behavior
timestamps = bh.start_s
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
category, timestamps = correct_chasing_events(category, timestamps)
# split categories
chasing_onset = timestamps[category == 0]
chasing_offset = timestamps[category == 1]
physical_contact = timestamps[category == 2]
##### TODO Physical contact-triggered chirps (PTC) mit Rasterplot #####
# Wahrscheinlichkeit von Phys auf Ch und vice versa
# Chasing-triggered chirps (CTC) mit Rasterplot
# Wahrscheinlichkeit von Chase auf Ch und vice versa
# First overview plot
fig1, ax1 = plt.subplots()
ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
ax1.scatter(chasing_onset, np.ones_like(chasing_onset)*2, marker='.', color='forestgreen', label='Chasing onset')
ax1.scatter(chasing_offset, np.ones_like(chasing_offset)*2.5, marker='.', color='firebrick', label='Chasing offset')
ax1.scatter(physical_contact, np.ones_like(physical_contact)*3, marker='x', color='black', label='Physical contact')
plt.legend()
# plt.show()
plt.close()
# Get fish ids
all_fish_ids = np.unique(chirps_fish_ids)
# Associate chirps to inidividual fish
fish1 = chirps[chirps_fish_ids == all_fish_ids[0]]
fish2 = chirps[chirps_fish_ids == all_fish_ids[1]]
fish = [len(fish1), len(fish2)]
#### Chirp counts per fish general #####
fig2, ax2 = plt.subplots()
x = ['Fish1', 'Fish2']
width = 0.35
ax2.bar(x, fish, width=width)
ax2.set_ylabel('Chirp count')
# plt.show()
plt.close()
##### Count chirps emitted during chasing events and chirps emitted out of chasing events #####
chirps_in_chasings = []
for onset, offset in zip(chasing_onset, chasing_offset):
chirps_in_chasing = [c for c in chirps if (c > onset) & (c < offset)]
chirps_in_chasings.append(chirps_in_chasing)
# chirps out of chasing events
counts_chirps_chasings = 0
chasings_without_chirps = 0
for i in chirps_in_chasings:
if i:
chasings_without_chirps += 1
else:
counts_chirps_chasings += 1
# chirps in chasing events
fig3 , ax3 = plt.subplots()
ax3.bar(['Chirps in chasing events', 'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
plt.ylabel('Count')
plt.show()
plt.close()
# comparison between chasing events with and without chirps
embed()
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/2020-03-13-10_00/'
datapath = '../data/mount_data/2020-05-13-10_00/'
main(datapath)