adding boolien vector to reduce duplicates
This commit is contained in:
parent
8138e3107f
commit
363f2dd14c
@ -551,13 +551,16 @@ def main(datapath: str) -> None:
|
|||||||
|
|
||||||
|
|
||||||
current_chirps = []
|
current_chirps = []
|
||||||
|
bool_timestamps = np.ones_like(timestamps, dtype=bool)
|
||||||
for tt in timestamps:
|
for bo, tt in enumerate(timestamps):
|
||||||
|
if bool_timestamps[bo] == False:
|
||||||
|
continue
|
||||||
cm = timestamps_idx[(timestamps >= tt) & (
|
cm = timestamps_idx[(timestamps >= tt) & (
|
||||||
timestamps <= tt + config.chirp_window_threshold)]
|
timestamps <= tt + config.chirp_window_threshold)]
|
||||||
if set([0, 1, 2]).issubset(timestamps_features[cm]):
|
if set([0, 1, 2]).issubset(timestamps_features[cm]):
|
||||||
current_chirps.append(np.mean(timestamps[cm]))
|
current_chirps.append(np.mean(timestamps[cm]))
|
||||||
electrodes_of_chirps.append(el)
|
electrodes_of_chirps.append(el)
|
||||||
|
bool_timestamps[cm] = False
|
||||||
|
|
||||||
|
|
||||||
# for checking if there are chirps on multiple electrodes
|
# for checking if there are chirps on multiple electrodes
|
||||||
@ -593,22 +596,31 @@ def main(datapath: str) -> None:
|
|||||||
sort_chirps_electrodes = chirps_electrodes[np.argsort(chirps_electrodes)]
|
sort_chirps_electrodes = chirps_electrodes[np.argsort(chirps_electrodes)]
|
||||||
sort_electrodes = electrodes_of_chirps[np.argsort(chirps_electrodes)]
|
sort_electrodes = electrodes_of_chirps[np.argsort(chirps_electrodes)]
|
||||||
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
||||||
|
# make index vector
|
||||||
|
index_vector = np.arange(len(sort_chirps_electrodes))
|
||||||
|
|
||||||
the_real_chirps = []
|
the_real_chirps = []
|
||||||
|
for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
||||||
|
if bool_vector[chirp_index] == False:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
||||||
|
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
||||||
|
|
||||||
|
if set([0,1]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([1,0]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([0,2]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([1,2]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
|
||||||
|
bool_vector[cm] = False
|
||||||
|
for ct in the_real_chirps:
|
||||||
|
axs[0, el].axvline(ct, color='b', lw=1)
|
||||||
embed()
|
embed()
|
||||||
for seoc in sort_chirps_electrodes:
|
plt.show()
|
||||||
|
|
||||||
cm = sort_electrodes[[(sort_chirps_electrodes >= seoc) & (
|
|
||||||
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)][bool_vector]]
|
|
||||||
|
|
||||||
if set([0,1]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
elif set([0,2]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
elif set([1,2]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
|
|
||||||
bool_vector[sort_electrodes[cm]] = False
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user