added docstrings
This commit is contained in:
parent
e174979e9c
commit
21ff35c6ac
@ -9,14 +9,56 @@ from scipy.ndimage import gaussian_filter1d
|
|||||||
from thunderfish.dataloader import DataLoader
|
from thunderfish.dataloader import DataLoader
|
||||||
from thunderfish.powerspectrum import spectrogram, decibel
|
from thunderfish.powerspectrum import spectrogram, decibel
|
||||||
|
|
||||||
|
|
||||||
from modules.filters import bandpass_filter, envelope, highpass_filter
|
from modules.filters import bandpass_filter, envelope, highpass_filter
|
||||||
|
|
||||||
|
|
||||||
|
class LoadData:
|
||||||
|
"""
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
data : DataLoader object containing raw data
|
||||||
|
samplerate : sampling rate of raw data
|
||||||
|
time : array of time for tracked fundamental frequency
|
||||||
|
freq : array of fundamental frequency
|
||||||
|
idx : array of indices to access time array
|
||||||
|
ident : array of identifiers for each tracked fundamental frequency
|
||||||
|
ids : array of unique identifiers exluding NaNs
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, datapath: str) -> None:
|
||||||
|
|
||||||
|
# load raw data
|
||||||
|
file = os.path.join(datapath, "traces-grid1.raw")
|
||||||
|
self.data = DataLoader(file, 60.0, 0, channel=-1)
|
||||||
|
self.samplerate = self.data.samplerate
|
||||||
|
|
||||||
|
# load wavetracker files
|
||||||
|
self.time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||||
|
self.freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||||
|
self.idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||||
|
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||||
|
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
|
||||||
|
|
||||||
|
|
||||||
def instantaneos_frequency(
|
def instantaneos_frequency(
|
||||||
signal: np.ndarray, samplerate: int
|
signal: np.ndarray, samplerate: int
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Compute the instantaneous frequency of a signal.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
signal : np.ndarray
|
||||||
|
Signal to compute the instantaneous frequency from.
|
||||||
|
samplerate : int
|
||||||
|
Samplerate of the signal.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
tuple[np.ndarray, np.ndarray]
|
||||||
|
|
||||||
|
"""
|
||||||
# calculate instantaneos frequency with zero crossings
|
# calculate instantaneos frequency with zero crossings
|
||||||
roll_signal = np.roll(signal, shift=1)
|
roll_signal = np.roll(signal, shift=1)
|
||||||
time_signal = np.arange(len(signal)) / samplerate
|
time_signal = np.arange(len(signal)) / samplerate
|
||||||
@ -44,7 +86,19 @@ def instantaneos_frequency(
|
|||||||
|
|
||||||
|
|
||||||
def plot_spectrogram(axis, signal: np.ndarray, samplerate: float) -> None:
|
def plot_spectrogram(axis, signal: np.ndarray, samplerate: float) -> None:
|
||||||
|
"""
|
||||||
|
Plot a spectrogram of a signal.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
axis : matplotlib axis
|
||||||
|
Axis to plot the spectrogram on.
|
||||||
|
signal : np.ndarray
|
||||||
|
Signal to plot the spectrogram from.
|
||||||
|
samplerate : float
|
||||||
|
Samplerate of the signal.
|
||||||
|
|
||||||
|
"""
|
||||||
# compute spectrogram
|
# compute spectrogram
|
||||||
spec_power, spec_freqs, spec_times = spectrogram(
|
spec_power, spec_freqs, spec_times = spectrogram(
|
||||||
signal,
|
signal,
|
||||||
@ -65,7 +119,26 @@ def plot_spectrogram(axis, signal: np.ndarray, samplerate: float) -> None:
|
|||||||
def double_bandpass(
|
def double_bandpass(
|
||||||
data: DataLoader, samplerate: int, freqs: np.ndarray, search_freq: float
|
data: DataLoader, samplerate: int, freqs: np.ndarray, search_freq: float
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Apply a bandpass filter to the baseline of a signal and a second bandpass
|
||||||
|
filter above or below the baseline.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data : DataLoader
|
||||||
|
Data to apply the filter to.
|
||||||
|
samplerate : int
|
||||||
|
Samplerate of the signal.
|
||||||
|
freqs : np.ndarray
|
||||||
|
Tracked fundamental frequencies of the signal.
|
||||||
|
search_freq : float
|
||||||
|
Frequency to search for above or below the baseline.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
tuple[np.ndarray, np.ndarray]
|
||||||
|
|
||||||
|
"""
|
||||||
# compute boundaries to filter baseline
|
# compute boundaries to filter baseline
|
||||||
q25, q75 = np.percentile(freqs, [25, 75])
|
q25, q75 = np.percentile(freqs, [25, 75])
|
||||||
|
|
||||||
@ -98,6 +171,9 @@ def main(datapath: str) -> None:
|
|||||||
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||||
|
|
||||||
# set time window # <------------------------ Iterate through windows here
|
# set time window # <------------------------ Iterate through windows here
|
||||||
|
window_duration = 60 * data.samplerate
|
||||||
|
window_overlap = 0.3
|
||||||
|
|
||||||
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
||||||
dt = 60
|
dt = 60
|
||||||
start_index = t0 * data.samplerate
|
start_index = t0 * data.samplerate
|
||||||
@ -216,13 +292,15 @@ def main(datapath: str) -> None:
|
|||||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
||||||
)
|
)
|
||||||
|
|
||||||
axs[5].plot(np.arange(len(baseline)) / data.samplerate, search_envelope)
|
axs[5].plot(np.arange(len(baseline)) /
|
||||||
|
data.samplerate, search_envelope)
|
||||||
|
|
||||||
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||||
|
|
||||||
# detect peaks baseline_enelope
|
# detect peaks baseline_enelope
|
||||||
prominence = iqr(baseline_envelope)
|
prominence = iqr(baseline_envelope)
|
||||||
baseline_peaks, _ = find_peaks(baseline_envelope, prominence=prominence)
|
baseline_peaks, _ = find_peaks(
|
||||||
|
baseline_envelope, prominence=prominence)
|
||||||
axs[4].scatter(
|
axs[4].scatter(
|
||||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
||||||
baseline_envelope[baseline_peaks],
|
baseline_envelope[baseline_peaks],
|
||||||
@ -245,8 +323,6 @@ def main(datapath: str) -> None:
|
|||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
#
|
|
||||||
|
|
||||||
axs[0].set_title("Spectrogram")
|
axs[0].set_title("Spectrogram")
|
||||||
axs[1].set_title("Fitered baseline instanenous frequency")
|
axs[1].set_title("Fitered baseline instanenous frequency")
|
||||||
axs[2].set_title("Fitered baseline")
|
axs[2].set_title("Fitered baseline")
|
||||||
|
Loading…
Reference in New Issue
Block a user