impplemented amplitude check before thresholding inst freq
This commit is contained in:
parent
e1e1e75cd2
commit
21c74b3cb0
@ -535,7 +535,7 @@ def mask_low_amplitudes(envelope, threshold):
|
||||
|
||||
"""
|
||||
mask = np.ones_like(envelope, dtype=bool)
|
||||
mask[envelope < threshold] = np.nan
|
||||
mask[envelope < threshold] = False
|
||||
return mask
|
||||
|
||||
|
||||
@ -835,6 +835,14 @@ def chirpdetection(datapath: str, plot: str, debug: str = "false") -> None:
|
||||
cutoff_frequency=config.baseline_envelope_cutoff,
|
||||
)
|
||||
|
||||
# create a mask that removes areas where amplitudes are very
|
||||
# because the instantaneous frequency is not reliable there
|
||||
|
||||
amplitude_mask = mask_low_amplitudes(
|
||||
baseline_envelope_unfiltered,
|
||||
config.baseline_min_amplitude
|
||||
)
|
||||
|
||||
# highpass filter baseline envelope to remove slower
|
||||
# fluctuations e.g. due to motion envelope
|
||||
|
||||
@ -845,14 +853,6 @@ def chirpdetection(datapath: str, plot: str, debug: str = "false") -> None:
|
||||
highf=config.baseline_envelope_bandpass_highf,
|
||||
)
|
||||
|
||||
# create a mask that removes areas where amplitudes are very
|
||||
# because the instantaneous frequency is not reliable there
|
||||
|
||||
amplitude_mask = mask_low_amplitudes(
|
||||
baseline_envelope,
|
||||
config.baseline_min_amplitude
|
||||
)
|
||||
|
||||
# invert baseline envelope to find troughs in the baseline
|
||||
|
||||
baseline_envelope = -baseline_envelope
|
||||
@ -876,15 +876,10 @@ def chirpdetection(datapath: str, plot: str, debug: str = "false") -> None:
|
||||
# chirp. This phenomenon is only observed on chirps on a narrow
|
||||
# filtered baseline such as the one we are working with.
|
||||
|
||||
baseline_frequency = instantaneous_frequency2(baselineband, data.raw_rate)
|
||||
|
||||
(
|
||||
baseline_frequency_time,
|
||||
baseline_frequency,
|
||||
) = instantaneous_frequency(
|
||||
signal=baselineband,
|
||||
samplerate=data.raw_rate,
|
||||
smoothing_window=config.baseline_frequency_smoothing,
|
||||
baseline_frequency = instantaneous_frequency(
|
||||
baselineband,
|
||||
data.raw_rate,
|
||||
config.baseline_frequency_smoothing
|
||||
)
|
||||
|
||||
# Take the absolute of the instantaneous frequency to invert
|
||||
@ -902,9 +897,7 @@ def chirpdetection(datapath: str, plot: str, debug: str = "false") -> None:
|
||||
# to enter normalization, where small changes due to noise
|
||||
# would be amplified
|
||||
|
||||
# if not has_chirp(baseline_frequency[amplitude_mask], config.baseline_frequency_peakheight):
|
||||
# continue
|
||||
if not has_chirp(baseline_frequency, config.baseline_frequency_peakheight):
|
||||
if not has_chirp(baseline_frequency_filtered[amplitude_mask], config.baseline_frequency_peakheight):
|
||||
continue
|
||||
|
||||
# CUT OFF OVERLAP ---------------------------------------------
|
||||
@ -925,20 +918,24 @@ def chirpdetection(datapath: str, plot: str, debug: str = "false") -> None:
|
||||
search_envelope_unfiltered = search_envelope_unfiltered[no_edges]
|
||||
search_envelope = search_envelope[no_edges]
|
||||
|
||||
# get instantaneous frequency withoup edges
|
||||
no_edges_t0 = int(window_edge) / data.raw_rate
|
||||
no_edges_t1 = baseline_frequency_time[-1] - (
|
||||
int(window_edge) / data.raw_rate
|
||||
)
|
||||
no_edges = (baseline_frequency_time >= no_edges_t0) & (
|
||||
baseline_frequency_time <= no_edges_t1
|
||||
)
|
||||
|
||||
baseline_frequency_filtered = baseline_frequency_filtered[no_edges]
|
||||
baseline_frequency = baseline_frequency[no_edges]
|
||||
baseline_frequency_time = (
|
||||
baseline_frequency_time[no_edges] + window_start_seconds
|
||||
)
|
||||
baseline_frequency_filtered = baseline_frequency_filtered[no_edges]
|
||||
baseline_frequency_time = current_raw_time
|
||||
|
||||
# # get instantaneous frequency withoup edges
|
||||
# no_edges_t0 = int(window_edge) / data.raw_rate
|
||||
# no_edges_t1 = baseline_frequency_time[-1] - (
|
||||
# int(window_edge) / data.raw_rate
|
||||
# )
|
||||
# no_edges = (baseline_frequency_time >= no_edges_t0) & (
|
||||
# baseline_frequency_time <= no_edges_t1
|
||||
# )
|
||||
|
||||
# baseline_frequency_filtered = baseline_frequency_filtered[no_edges]
|
||||
# baseline_frequency = baseline_frequency[no_edges]
|
||||
# baseline_frequency_time = (
|
||||
# baseline_frequency_time[no_edges] + window_start_seconds
|
||||
# )
|
||||
|
||||
# NORMALIZE ---------------------------------------------------
|
||||
|
||||
|
@ -27,7 +27,7 @@ baseline_frequency_smoothing: 3 # instantaneous frequency smoothing
|
||||
# Feature processing parameters -----------------------------------------------
|
||||
|
||||
baseline_frequency_peakheight: 5 # the min peak height of the baseline instfreq
|
||||
baseline_min_amplitude: 0.1 # the minimal value of the baseline envelope
|
||||
baseline_min_amplitude: 0.0001 # the minimal value of the baseline envelope
|
||||
baseline_envelope_cutoff: 25 # envelope estimation cutoff
|
||||
baseline_envelope_bandpass_lowf: 2 # envelope badpass lower cutoff
|
||||
baseline_envelope_bandpass_highf: 100 # envelope bandbass higher cutoff
|
||||
|
@ -22,6 +22,7 @@ def minmaxnorm(data):
|
||||
"""
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
def instantaneous_frequency2(signal: np.ndarray, fs: float, interpolation: str = 'linear') -> np.ndarray:
|
||||
"""
|
||||
Compute the instantaneous frequency of a periodic signal using zero crossings and resample the frequency using linear
|
||||
@ -66,7 +67,8 @@ def instantaneous_frequency(
|
||||
signal: np.ndarray,
|
||||
samplerate: int,
|
||||
smoothing_window: int,
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
interpolation: str = 'linear',
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute the instantaneous frequency of a signal that is approximately
|
||||
sinusoidal and symmetric around 0.
|
||||
@ -79,6 +81,8 @@ def instantaneous_frequency(
|
||||
Samplerate of the signal.
|
||||
smoothing_window : int
|
||||
Window size for the gaussian filter.
|
||||
interpolation : str, optional
|
||||
Interpolation method to use during resampling. Should be either 'linear' or 'cubic'. Default is 'linear'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -112,7 +116,17 @@ def instantaneous_frequency(
|
||||
1 / np.diff(true_zero), smoothing_window
|
||||
)
|
||||
|
||||
return instantaneous_frequency_time, instantaneous_frequency
|
||||
# Resample the frequency using specified interpolation method to match the dimensions of the input array
|
||||
orig_len = len(signal)
|
||||
freq = resample(instantaneous_frequency, orig_len)
|
||||
|
||||
if interpolation == 'linear':
|
||||
freq = np.interp(np.arange(0, orig_len), np.arange(0, orig_len), freq)
|
||||
elif interpolation == 'cubic':
|
||||
freq = resample(freq, orig_len, window='cubic')
|
||||
|
||||
|
||||
return freq
|
||||
|
||||
|
||||
def purge_duplicates(
|
||||
|
Loading…
Reference in New Issue
Block a user