winner vs loser plot, winner physical strange
This commit is contained in:
parent
e7b9d239d2
commit
1bdb7e721a
@ -1,6 +1,7 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from IPython import embed
|
||||
@ -182,10 +183,10 @@ def main(datapath: str):
|
||||
duration = offset - onset
|
||||
chasing_durations.append(duration)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.boxplot(chasing_durations)
|
||||
plt.show()
|
||||
plt.close()
|
||||
# fig, ax = plt.subplots()
|
||||
# ax.boxplot(chasing_durations)
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
# Get fish ids
|
||||
fish_ids = np.unique(chirps_fish_ids)
|
||||
@ -217,73 +218,150 @@ def main(datapath: str):
|
||||
nshuffled_chirps_offset = []
|
||||
nshuffled_chirps_physical = []
|
||||
|
||||
for i in range(nbootstrapping):
|
||||
# Calculate interchirp intervals; add first chirp timestamp in beginning to get equal lengths
|
||||
interchirp_intervals = np.append(np.array([chirps[0]]), np.diff(chirps))
|
||||
np.random.shuffle(interchirp_intervals)
|
||||
shuffled_chirps = np.cumsum(interchirp_intervals)
|
||||
# Shuffled chasing onset chirps
|
||||
_, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
nshuffled_chirps_onset.append(cc_shuffled_onset_chirps)
|
||||
# Shuffled chasing offset chirps
|
||||
_, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
nshuffled_chirps_offset.append(cc_shuffled_offset_chirps)
|
||||
# Shuffled physical contact chirps
|
||||
_, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
nshuffled_chirps_physical.append(cc_shuffled_physical_chirps)
|
||||
# for i in range(nbootstrapping):
|
||||
# # Calculate interchirp intervals; add first chirp timestamp in beginning to get equal lengths
|
||||
# interchirp_intervals = np.append(np.array([chirps[0]]), np.diff(chirps))
|
||||
# np.random.shuffle(interchirp_intervals)
|
||||
# shuffled_chirps = np.cumsum(interchirp_intervals)
|
||||
# # Shuffled chasing onset chirps
|
||||
# _, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
# nshuffled_chirps_onset.append(cc_shuffled_onset_chirps)
|
||||
# # Shuffled chasing offset chirps
|
||||
# _, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
# nshuffled_chirps_offset.append(cc_shuffled_offset_chirps)
|
||||
# # Shuffled physical contact chirps
|
||||
# _, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, width)
|
||||
# nshuffled_chirps_physical.append(cc_shuffled_physical_chirps)
|
||||
|
||||
shuffled_q5_onset, shuffled_median_onset, shuffled_q95_onset = np.percentile(nshuffled_chirps_onset, (5, 50, 95), axis=0)
|
||||
shuffled_q5_offset, shuffled_median_offset, shuffled_q95_offset = np.percentile(nshuffled_chirps_offset, (5, 50, 95), axis=0)
|
||||
shuffled_q5_physical, shuffled_median_physical, shuffled_q95_physical = np.percentile(nshuffled_chirps_physical, (5, 50, 95), axis=0)
|
||||
|
||||
embed()
|
||||
# shuffled_q5_onset, shuffled_median_onset, shuffled_q95_onset = np.percentile(nshuffled_chirps_onset, (5, 50, 95), axis=0)
|
||||
# shuffled_q5_offset, shuffled_median_offset, shuffled_q95_offset = np.percentile(nshuffled_chirps_offset, (5, 50, 95), axis=0)
|
||||
# shuffled_q5_physical, shuffled_median_physical, shuffled_q95_physical = np.percentile(nshuffled_chirps_physical, (5, 50, 95), axis=0)
|
||||
|
||||
# Plot all events with all shuffled
|
||||
fig, ax = plt.subplots(1, 3, figsize=(50 / 2.54, 15 / 2.54), constrained_layout=True, sharey='all')
|
||||
# fig, ax = plt.subplots(1, 3, figsize=(50 / 2.54, 15 / 2.54), constrained_layout=True, sharey='all')
|
||||
# offset = [1.35]
|
||||
# ax[0].set_xlabel('Time[s]')
|
||||
# # Plot chasing onsets
|
||||
# ax[0].set_ylabel('Chirp rate [Hz]')
|
||||
# ax[0].plot(time, cc_chasing_onset_chirps, color='tab:blue', zorder=100)
|
||||
# ax0 = ax[0].twinx()
|
||||
# ax0.eventplot(np.array([centered_chasing_onset_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
# ax0.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax0.set_yticklabels([])
|
||||
# ax0.set_yticks([])
|
||||
# ax[0].fill_between(time, shuffled_q5_onset, shuffled_q95_onset, color='tab:gray', alpha=0.5)
|
||||
# ax[0].plot(time, shuffled_median_onset, color='k')
|
||||
# # Plot chasing offets
|
||||
# ax[1].set_xlabel('Time[s]')
|
||||
# ax[1].plot(time, cc_chasing_offset_chirps, color='tab:blue', zorder=100)
|
||||
# ax1 = ax[1].twinx()
|
||||
# ax1.eventplot(np.array([centered_chasing_offset_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
# ax1.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax1.set_yticklabels([])
|
||||
# ax1.set_yticks([])
|
||||
# ax[1].fill_between(time, shuffled_q5_offset, shuffled_q95_offset, color='tab:gray', alpha=0.5)
|
||||
# ax[1].plot(time, shuffled_median_offset, color='k')
|
||||
# # Plot physical contacts
|
||||
# ax[2].set_xlabel('Time[s]')
|
||||
# ax[2].plot(time, cc_physical_chirps, color='tab:blue', zorder=100)
|
||||
# ax2 = ax[2].twinx()
|
||||
# ax2.eventplot(np.array([centered_physical_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
# ax2.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax2.set_yticklabels([])
|
||||
# ax2.set_yticks([])
|
||||
# ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color='tab:gray', alpha=0.5)
|
||||
# ax[2].plot(time, shuffled_median_physical, color='k')
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
|
||||
|
||||
#### Chirps around events, winner VS loser, one recording ####
|
||||
# Load file with fish ids and winner/loser info
|
||||
meta = pd.read_csv('../data/mount_data/order_meta.csv')
|
||||
current_recording = meta[meta.index == 43]
|
||||
fish1 = current_recording['rec_id1'].values
|
||||
fish2 = current_recording['rec_id2'].values
|
||||
# Implement check if fish_ids from meta and chirp detection are the same???
|
||||
winner = current_recording['winner'].values
|
||||
|
||||
if winner == fish1:
|
||||
loser = fish2
|
||||
elif winner == fish2:
|
||||
loser = fish1
|
||||
|
||||
winner_chirps = chirps[chirps_fish_ids == winner]
|
||||
loser_chirps = chirps[chirps_fish_ids == loser]
|
||||
|
||||
# Event triggered winner chirps
|
||||
_, winner_centered_onset, winner_cc_onset = event_triggered_chirps(chasing_onsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, winner_centered_offset, winner_cc_offset = event_triggered_chirps(chasing_offsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, winner_centered_physical, winner_cc_physical = event_triggered_chirps(physical_contacts, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
# Event triggered loser chirps
|
||||
_, loser_centered_onset, loser_cc_onset = event_triggered_chirps(chasing_onsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, loser_centered_offset, loser_cc_offset = event_triggered_chirps(chasing_offsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, loser_centered_physical, loser_cc_physical = event_triggered_chirps(physical_contacts, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
fig, ax = plt.subplots(2, 3, figsize=(50 / 2.54, 15 / 2.54), constrained_layout=True, sharey='row')
|
||||
offset = [1.35]
|
||||
ax[0].set_xlabel('Time[s]')
|
||||
# Plot chasing onsets
|
||||
ax[0].set_ylabel('Chirp rate [Hz]')
|
||||
ax[0].plot(time, cc_chasing_onset_chirps, color='tab:blue', zorder=100)
|
||||
ax0 = ax[0].twinx()
|
||||
ax0.eventplot(np.array([centered_chasing_onset_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
ax[1][0].set_xlabel('Time[s]')
|
||||
ax[1][1].set_xlabel('Time[s]')
|
||||
ax[1][2].set_xlabel('Time[s]')
|
||||
# Plot winner chasing onsets
|
||||
ax[0][0].set_ylabel('Chirp rate [Hz]')
|
||||
ax[0][0].plot(time, winner_cc_onset, color='tab:blue', zorder=100)
|
||||
ax0 = ax[0][0].twinx()
|
||||
ax0.eventplot(np.array([winner_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
ax0.set_ylabel('Event')
|
||||
ax0.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax0.set_yticklabels([])
|
||||
ax0.set_yticks([])
|
||||
ax[0].fill_between(time, shuffled_q5_onset, shuffled_q95_onset, color='tab:gray', alpha=0.5)
|
||||
ax[0].plot(time, shuffled_median_onset, color='k')
|
||||
# Plot chasing offets
|
||||
ax[1].set_xlabel('Time[s]')
|
||||
ax[1].plot(time, cc_chasing_offset_chirps, color='tab:blue', zorder=100)
|
||||
ax1 = ax[1].twinx()
|
||||
ax1.eventplot(np.array([centered_chasing_offset_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
# Plot winner chasing offets
|
||||
ax[0][1].plot(time, winner_cc_offset, color='tab:blue', zorder=100)
|
||||
ax1 = ax[0][1].twinx()
|
||||
ax1.eventplot(np.array([winner_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
ax1.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax1.set_yticklabels([])
|
||||
ax1.set_yticks([])
|
||||
ax[1].fill_between(time, shuffled_q5_offset, shuffled_q95_offset, color='tab:gray', alpha=0.5)
|
||||
ax[1].plot(time, shuffled_median_offset, color='k')
|
||||
# Plot physical contacts
|
||||
ax[2].set_xlabel('Time[s]')
|
||||
ax[2].plot(time, cc_physical_chirps, color='tab:blue', zorder=100)
|
||||
ax2 = ax[2].twinx()
|
||||
ax2.eventplot(np.array([centered_physical_chirps]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
# Plot winner physical contacts
|
||||
ax[0][2].plot(time, winner_cc_physical, color='tab:blue', zorder=100)
|
||||
ax2 = ax[0][2].twinx()
|
||||
ax2.eventplot(np.array([winner_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
ax2.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax2.set_yticklabels([])
|
||||
ax2.set_yticks([])
|
||||
ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color='tab:gray', alpha=0.5)
|
||||
ax[2].plot(time, shuffled_median_physical, color='k')
|
||||
# Plot loser chasing onsets
|
||||
ax[1][0].set_ylabel('Chirp rate [Hz]')
|
||||
ax[1][0].plot(time, loser_cc_onset, color='tab:blue', zorder=100)
|
||||
ax3 = ax[1][0].twinx()
|
||||
ax3.eventplot(np.array([loser_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
ax3.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax3.set_yticklabels([])
|
||||
ax3.set_yticks([])
|
||||
# Plot loser chasing offsets
|
||||
ax[1][1].plot(time, loser_cc_offset, color='tab:blue', zorder=100)
|
||||
ax4 = ax[1][1].twinx()
|
||||
ax4.eventplot(np.array([loser_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax4.set_yticklabels([])
|
||||
ax4.set_yticks([])
|
||||
# Plot loser physical contacts
|
||||
ax[1][2].plot(time, loser_cc_physical, color='tab:blue', zorder=100)
|
||||
ax5 = ax[1][2].twinx()
|
||||
ax5.eventplot(np.array([loser_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
ax5.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax5.set_yticklabels([])
|
||||
ax5.set_yticks([])
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
|
||||
embed()
|
||||
exit()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#### Chirps around events, only winners, one recording ####
|
||||
for i in range(len(fish_ids)):
|
||||
fish = fish_ids[i]
|
||||
chirps_temp = chirps[chirps_fish_ids == fish]
|
||||
@ -291,10 +369,6 @@ def main(datapath: str):
|
||||
|
||||
#### Chirps around events, only losers, one recording ####
|
||||
|
||||
|
||||
embed()
|
||||
exit()
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
Reference in New Issue
Block a user