Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/raab/GP2023_chirp_detection
This commit is contained in:
commit
1077558868
@ -29,8 +29,8 @@ class LoadData:
|
|||||||
def __init__(self, datapath: str) -> None:
|
def __init__(self, datapath: str) -> None:
|
||||||
|
|
||||||
# load raw data
|
# load raw data
|
||||||
file = os.path.join(datapath, "traces-grid1.raw")
|
self.file = os.path.join(datapath, "traces-grid1.raw")
|
||||||
self.data = DataLoader(file, 60.0, 0, channel=-1)
|
self.data = DataLoader(self.file, 60.0, 0, channel=-1)
|
||||||
self.samplerate = self.data.samplerate
|
self.samplerate = self.data.samplerate
|
||||||
|
|
||||||
# load wavetracker files
|
# load wavetracker files
|
||||||
@ -40,6 +40,12 @@ class LoadData:
|
|||||||
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||||
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
|
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return f"LoadData({self.file})"
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return f"LoadData({self.file})"
|
||||||
|
|
||||||
|
|
||||||
def instantaneos_frequency(
|
def instantaneos_frequency(
|
||||||
signal: np.ndarray, samplerate: int
|
signal: np.ndarray, samplerate: int
|
||||||
@ -62,7 +68,8 @@ def instantaneos_frequency(
|
|||||||
# calculate instantaneos frequency with zero crossings
|
# calculate instantaneos frequency with zero crossings
|
||||||
roll_signal = np.roll(signal, shift=1)
|
roll_signal = np.roll(signal, shift=1)
|
||||||
time_signal = np.arange(len(signal)) / samplerate
|
time_signal = np.arange(len(signal)) / samplerate
|
||||||
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)]
|
period_index = np.arange(len(signal))[(
|
||||||
|
roll_signal < 0) & (signal >= 0)][1:-1]
|
||||||
|
|
||||||
upper_bound = np.abs(signal[period_index])
|
upper_bound = np.abs(signal[period_index])
|
||||||
lower_bound = np.abs(signal[period_index - 1])
|
lower_bound = np.abs(signal[period_index - 1])
|
||||||
@ -77,7 +84,7 @@ def instantaneos_frequency(
|
|||||||
true_zero = lower_time + lower_ratio * time_delta
|
true_zero = lower_time + lower_ratio * time_delta
|
||||||
|
|
||||||
# create new time array
|
# create new time array
|
||||||
inst_freq_time = true_zero[1:] + 0.5 * np.diff(true_zero)
|
inst_freq_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
|
||||||
|
|
||||||
# compute frequency
|
# compute frequency
|
||||||
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
|
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
|
||||||
@ -167,52 +174,74 @@ def main(datapath: str) -> None:
|
|||||||
# load wavetracker files
|
# load wavetracker files
|
||||||
time = np.load(datapath + "times.npy", allow_pickle=True)
|
time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||||
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||||
|
powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
|
||||||
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||||
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||||
|
|
||||||
# set time window # <------------------------ Iterate through windows here
|
# set time window # <------------------------ Iterate through windows here
|
||||||
window_duration = 60 * 5 * data.samplerate # 5 minutes window
|
window_duration = 5 * data.samplerate # 5 seconds window
|
||||||
window_overlap = 30 * data.samplerate # 30 seconds overlap
|
window_overlap = 0.5 * data.samplerate # 30 seconds overlap
|
||||||
raw_time = np.arange(data.shape[0])
|
raw_time = np.arange(data.shape[0])
|
||||||
|
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
||||||
|
dt = 60 * data.samplerate
|
||||||
|
|
||||||
window_starts = np.arange(
|
window_starts = np.arange(
|
||||||
raw_time[0], raw_time[-1], window_duration - window_overlap / 2)
|
t0, t0 + dt, window_duration - window_overlap, dtype=int)
|
||||||
|
|
||||||
|
for start_index in window_starts:
|
||||||
|
|
||||||
|
# make t0 and dt
|
||||||
|
t0 = start_index / data.samplerate
|
||||||
|
dt = window_duration / data.samplerate
|
||||||
|
|
||||||
|
# set index window
|
||||||
|
stop_index = start_index + window_duration
|
||||||
|
|
||||||
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
# t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
||||||
dt = 60
|
# dt = 60
|
||||||
start_index = t0 * data.samplerate
|
# start_index = t0 * data.samplerate
|
||||||
stop_index = (t0 + dt) * data.samplerate
|
# stop_index = (t0 + dt) * data.samplerate
|
||||||
|
|
||||||
# load region of interest of raw data file
|
# load region of interest of raw data file
|
||||||
data_oi = data[start_index:stop_index, :]
|
data_oi = data[start_index:stop_index, :]
|
||||||
|
|
||||||
|
fig, axs = plt.subplots(
|
||||||
|
7,
|
||||||
|
2,
|
||||||
|
figsize=(20 / 2.54, 12 / 2.54),
|
||||||
|
constrained_layout=True,
|
||||||
|
sharex=True,
|
||||||
|
sharey='row',
|
||||||
|
)
|
||||||
|
|
||||||
# iterate through all fish
|
# iterate through all fish
|
||||||
for track_id in np.unique(ident[~np.isnan(ident)])[:2]:
|
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||||
|
|
||||||
# <------------------------------------------ Find best electrodes here
|
# <------------------------------------------ Find best electrodes here
|
||||||
# <------------------------------------------ Iterate through electrodes
|
# <------------------------------------------ Iterate through electrodes
|
||||||
# get indices for time array in time window
|
# get indices for time array in time window
|
||||||
window_index = np.arange(len(idx))[
|
window_index = np.arange(len(idx))[
|
||||||
(ident == track_id) & (time[idx] >= t0) & (time[idx] <= (t0 + dt))
|
(ident == track_id) & (time[idx] >= t0) & (
|
||||||
|
time[idx] <= (t0 + dt))
|
||||||
]
|
]
|
||||||
|
|
||||||
# filter baseline and above
|
# get tracked frequencies and their times
|
||||||
freq_temp = freq[window_index]
|
freq_temp = freq[window_index]
|
||||||
time_temp = time[idx[window_index]]
|
powers_temp = powers[window_index, :]
|
||||||
|
# time_temp = time[idx[window_index]]
|
||||||
|
track_samplerate = np.mean(1 / np.diff(time))
|
||||||
|
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||||
|
|
||||||
electrode = 10
|
# check if tracked data available in this window
|
||||||
|
if len(freq_temp) < expected_duration * 0.9:
|
||||||
|
continue
|
||||||
|
|
||||||
# initialize plot
|
# get best electrode
|
||||||
fig, axs = plt.subplots(
|
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
||||||
7,
|
# electrode = best_electrodes[0]
|
||||||
1,
|
|
||||||
figsize=(20 / 2.54, 12 / 2.54),
|
|
||||||
constrained_layout=True,
|
|
||||||
sharex=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# plot spectrogram
|
# plot spectrogram
|
||||||
plot_spectrogram(axs[0], data_oi[:, electrode], data.samplerate)
|
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
||||||
|
|
||||||
# plot wavetracker tracks to spectrogram
|
# plot wavetracker tracks to spectrogram
|
||||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||||
@ -242,30 +271,37 @@ def main(datapath: str) -> None:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# plot waveform of filtered signal
|
# plot waveform of filtered signal
|
||||||
axs[2].plot(np.arange(len(baseline)) / data.samplerate, baseline)
|
axs[2, i].plot(np.arange(len(baseline)) /
|
||||||
|
data.samplerate, baseline, c="k")
|
||||||
|
|
||||||
# plot instatneous frequency
|
# plot instatneous frequency
|
||||||
# broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
||||||
# freq_temp)-5, highf=np.mean(freq_temp)+200)
|
freq_temp)-5, highf=np.mean(freq_temp)+100)
|
||||||
|
|
||||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||||
baseline, data.samplerate
|
baseline, data.samplerate
|
||||||
)
|
)
|
||||||
axs[1].plot(baseline_freq_time, baseline_freq)
|
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||||
|
np.median(baseline_freq), marker=".")
|
||||||
|
|
||||||
# plot waveform of filtered search signal
|
# plot waveform of filtered search signal
|
||||||
axs[3].plot(np.arange(len(baseline)) / data.samplerate, search)
|
axs[3, i].plot(np.arange(len(baseline)) / data.samplerate, search)
|
||||||
|
|
||||||
# compute envelopes
|
# compute envelopes
|
||||||
cutoff = 25
|
cutoff = 25
|
||||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||||
axs[2].plot(
|
axs[2, i].plot(
|
||||||
np.arange(len(baseline)) / data.samplerate,
|
np.arange(len(baseline)) / data.samplerate,
|
||||||
baseline_envelope,
|
baseline_envelope,
|
||||||
c="orange",
|
c="orange",
|
||||||
)
|
)
|
||||||
|
axs[2, i].plot(
|
||||||
|
np.arange(len(baseline)) / data.samplerate,
|
||||||
|
broad_baseline,
|
||||||
|
c="green",
|
||||||
|
)
|
||||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||||
axs[3].plot(
|
axs[3, i].plot(
|
||||||
np.arange(len(baseline)) / data.samplerate,
|
np.arange(len(baseline)) / data.samplerate,
|
||||||
search_envelope,
|
search_envelope,
|
||||||
c="orange",
|
c="orange",
|
||||||
@ -293,21 +329,20 @@ def main(datapath: str) -> None:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# plot filtered and rectified envelope
|
# plot filtered and rectified envelope
|
||||||
axs[4].plot(
|
axs[4, i].plot(
|
||||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
||||||
)
|
)
|
||||||
|
|
||||||
axs[5].plot(np.arange(len(baseline)) /
|
axs[5, i].plot(np.arange(len(baseline)) /
|
||||||
data.samplerate, search_envelope)
|
data.samplerate, search_envelope)
|
||||||
|
|
||||||
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||||
|
|
||||||
# detect peaks baseline_enelope
|
# detect peaks baseline_enelope
|
||||||
embed()
|
|
||||||
prominence = iqr(baseline_envelope)
|
prominence = iqr(baseline_envelope)
|
||||||
baseline_peaks, _ = find_peaks(
|
baseline_peaks, _ = find_peaks(
|
||||||
baseline_envelope, prominence=prominence)
|
baseline_envelope, prominence=prominence)
|
||||||
axs[4].scatter(
|
axs[4, i].scatter(
|
||||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
||||||
baseline_envelope[baseline_peaks],
|
baseline_envelope[baseline_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
@ -315,27 +350,28 @@ def main(datapath: str) -> None:
|
|||||||
|
|
||||||
# detect peaks search_envelope
|
# detect peaks search_envelope
|
||||||
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
||||||
axs[5].scatter(
|
axs[5, i].scatter(
|
||||||
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
||||||
search_envelope[search_peaks],
|
search_envelope[search_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
# detect peaks inst_freq_filtered
|
# detect peaks inst_freq_filtered
|
||||||
inst_freq_peaks, _ = find_peaks(np.abs(inst_freq_filtered), height=2)
|
inst_freq_peaks, _ = find_peaks(
|
||||||
axs[6].scatter(
|
np.abs(inst_freq_filtered), height=2)
|
||||||
|
axs[6, i].scatter(
|
||||||
baseline_freq_time[inst_freq_peaks],
|
baseline_freq_time[inst_freq_peaks],
|
||||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
axs[0].set_title("Spectrogram")
|
axs[0, i].set_title("Spectrogram")
|
||||||
axs[1].set_title("Fitered baseline instanenous frequency")
|
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||||
axs[2].set_title("Fitered baseline")
|
axs[2, i].set_title("Fitered baseline")
|
||||||
axs[3].set_title("Fitered above")
|
axs[3, i].set_title("Fitered above")
|
||||||
axs[4].set_title("Filtered envelope of baseline envelope")
|
axs[4, i].set_title("Filtered envelope of baseline envelope")
|
||||||
axs[5].set_title("Search envelope")
|
axs[5, i].set_title("Search envelope")
|
||||||
axs[6].set_title("Filtered absolute instantaneous frequency")
|
axs[6, i].set_title("Filtered absolute instantaneous frequency")
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user