Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/raab/GP2023_chirp_detection
This commit is contained in:
commit
1077558868
@ -29,8 +29,8 @@ class LoadData:
|
||||
def __init__(self, datapath: str) -> None:
|
||||
|
||||
# load raw data
|
||||
file = os.path.join(datapath, "traces-grid1.raw")
|
||||
self.data = DataLoader(file, 60.0, 0, channel=-1)
|
||||
self.file = os.path.join(datapath, "traces-grid1.raw")
|
||||
self.data = DataLoader(self.file, 60.0, 0, channel=-1)
|
||||
self.samplerate = self.data.samplerate
|
||||
|
||||
# load wavetracker files
|
||||
@ -40,6 +40,12 @@ class LoadData:
|
||||
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LoadData({self.file})"
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"LoadData({self.file})"
|
||||
|
||||
|
||||
def instantaneos_frequency(
|
||||
signal: np.ndarray, samplerate: int
|
||||
@ -62,7 +68,8 @@ def instantaneos_frequency(
|
||||
# calculate instantaneos frequency with zero crossings
|
||||
roll_signal = np.roll(signal, shift=1)
|
||||
time_signal = np.arange(len(signal)) / samplerate
|
||||
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)]
|
||||
period_index = np.arange(len(signal))[(
|
||||
roll_signal < 0) & (signal >= 0)][1:-1]
|
||||
|
||||
upper_bound = np.abs(signal[period_index])
|
||||
lower_bound = np.abs(signal[period_index - 1])
|
||||
@ -77,7 +84,7 @@ def instantaneos_frequency(
|
||||
true_zero = lower_time + lower_ratio * time_delta
|
||||
|
||||
# create new time array
|
||||
inst_freq_time = true_zero[1:] + 0.5 * np.diff(true_zero)
|
||||
inst_freq_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
|
||||
|
||||
# compute frequency
|
||||
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
|
||||
@ -167,175 +174,204 @@ def main(datapath: str) -> None:
|
||||
# load wavetracker files
|
||||
time = np.load(datapath + "times.npy", allow_pickle=True)
|
||||
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
||||
powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
|
||||
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
||||
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
||||
|
||||
# set time window # <------------------------ Iterate through windows here
|
||||
window_duration = 60 * 5 * data.samplerate # 5 minutes window
|
||||
window_overlap = 30 * data.samplerate # 30 seconds overlap
|
||||
window_duration = 5 * data.samplerate # 5 seconds window
|
||||
window_overlap = 0.5 * data.samplerate # 30 seconds overlap
|
||||
raw_time = np.arange(data.shape[0])
|
||||
window_starts = np.arange(
|
||||
raw_time[0], raw_time[-1], window_duration - window_overlap / 2)
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
||||
dt = 60 * data.samplerate
|
||||
|
||||
window_starts = np.arange(
|
||||
t0, t0 + dt, window_duration - window_overlap, dtype=int)
|
||||
|
||||
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
||||
dt = 60
|
||||
start_index = t0 * data.samplerate
|
||||
stop_index = (t0 + dt) * data.samplerate
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
for start_index in window_starts:
|
||||
|
||||
# iterate through all fish
|
||||
for track_id in np.unique(ident[~np.isnan(ident)])[:2]:
|
||||
# make t0 and dt
|
||||
t0 = start_index / data.samplerate
|
||||
dt = window_duration / data.samplerate
|
||||
|
||||
# <------------------------------------------ Find best electrodes here
|
||||
# <------------------------------------------ Iterate through electrodes
|
||||
# get indices for time array in time window
|
||||
window_index = np.arange(len(idx))[
|
||||
(ident == track_id) & (time[idx] >= t0) & (time[idx] <= (t0 + dt))
|
||||
]
|
||||
# set index window
|
||||
stop_index = start_index + window_duration
|
||||
|
||||
# filter baseline and above
|
||||
freq_temp = freq[window_index]
|
||||
time_temp = time[idx[window_index]]
|
||||
# t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
||||
# dt = 60
|
||||
# start_index = t0 * data.samplerate
|
||||
# stop_index = (t0 + dt) * data.samplerate
|
||||
|
||||
electrode = 10
|
||||
# load region of interest of raw data file
|
||||
data_oi = data[start_index:stop_index, :]
|
||||
|
||||
# initialize plot
|
||||
fig, axs = plt.subplots(
|
||||
7,
|
||||
1,
|
||||
2,
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
)
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0], data_oi[:, electrode], data.samplerate)
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||
# here
|
||||
|
||||
# # get indices for time array in time window
|
||||
# window_index = np.arange(len(idx))[
|
||||
# (ident == track_id) &
|
||||
# (time[idx] >= t0) &
|
||||
# (time[idx] <= (t0 + dt))
|
||||
# ]
|
||||
|
||||
# freq_temp = freq[window_index]
|
||||
# time_temp = time[idx[window_index]]
|
||||
|
||||
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
||||
# axs[0].set_ylim(500, 1000)
|
||||
|
||||
# track_id = ids
|
||||
|
||||
# frequency where second filter filters
|
||||
search_freq = -50
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2].plot(np.arange(len(baseline)) / data.samplerate, baseline)
|
||||
|
||||
# plot instatneous frequency
|
||||
# broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
||||
# freq_temp)-5, highf=np.mean(freq_temp)+200)
|
||||
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
)
|
||||
axs[1].plot(baseline_freq_time, baseline_freq)
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3].plot(np.arange(len(baseline)) / data.samplerate, search)
|
||||
|
||||
# compute envelopes
|
||||
cutoff = 25
|
||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||
axs[2].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||
axs[3].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# highpass filter envelopes
|
||||
cutoff = 5
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope, data.samplerate, cutoff=cutoff
|
||||
)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope, data.samplerate, cutoff=cutoff)
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope), data.samplerate, cutoff
|
||||
)
|
||||
|
||||
# search_envelope = bandpass_filter(
|
||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||
|
||||
# bandpass filter the instantaneous
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq, data.samplerate, lowf=15, highf=8000
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4].plot(
|
||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
||||
)
|
||||
|
||||
axs[5].plot(np.arange(len(baseline)) /
|
||||
data.samplerate, search_envelope)
|
||||
|
||||
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
embed()
|
||||
prominence = iqr(baseline_envelope)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
baseline_envelope, prominence=prominence)
|
||||
axs[4].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks search_envelope
|
||||
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
||||
axs[5].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
inst_freq_peaks, _ = find_peaks(np.abs(inst_freq_filtered), height=2)
|
||||
axs[6].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
axs[0].set_title("Spectrogram")
|
||||
axs[1].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2].set_title("Fitered baseline")
|
||||
axs[3].set_title("Fitered above")
|
||||
axs[4].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5].set_title("Search envelope")
|
||||
axs[6].set_title("Filtered absolute instantaneous frequency")
|
||||
# iterate through all fish
|
||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||
|
||||
# <------------------------------------------ Find best electrodes here
|
||||
# <------------------------------------------ Iterate through electrodes
|
||||
# get indices for time array in time window
|
||||
window_index = np.arange(len(idx))[
|
||||
(ident == track_id) & (time[idx] >= t0) & (
|
||||
time[idx] <= (t0 + dt))
|
||||
]
|
||||
|
||||
# get tracked frequencies and their times
|
||||
freq_temp = freq[window_index]
|
||||
powers_temp = powers[window_index, :]
|
||||
# time_temp = time[idx[window_index]]
|
||||
track_samplerate = np.mean(1 / np.diff(time))
|
||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||
|
||||
# check if tracked data available in this window
|
||||
if len(freq_temp) < expected_duration * 0.9:
|
||||
continue
|
||||
|
||||
# get best electrode
|
||||
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
||||
# electrode = best_electrodes[0]
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
||||
|
||||
# plot wavetracker tracks to spectrogram
|
||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||
# here
|
||||
|
||||
# # get indices for time array in time window
|
||||
# window_index = np.arange(len(idx))[
|
||||
# (ident == track_id) &
|
||||
# (time[idx] >= t0) &
|
||||
# (time[idx] <= (t0 + dt))
|
||||
# ]
|
||||
|
||||
# freq_temp = freq[window_index]
|
||||
# time_temp = time[idx[window_index]]
|
||||
|
||||
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
||||
# axs[0].set_ylim(500, 1000)
|
||||
|
||||
# track_id = ids
|
||||
|
||||
# frequency where second filter filters
|
||||
search_freq = -50
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[2, i].plot(np.arange(len(baseline)) /
|
||||
data.samplerate, baseline, c="k")
|
||||
|
||||
# plot instatneous frequency
|
||||
broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
||||
freq_temp)-5, highf=np.mean(freq_temp)+100)
|
||||
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.samplerate
|
||||
)
|
||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||
np.median(baseline_freq), marker=".")
|
||||
|
||||
# plot waveform of filtered search signal
|
||||
axs[3, i].plot(np.arange(len(baseline)) / data.samplerate, search)
|
||||
|
||||
# compute envelopes
|
||||
cutoff = 25
|
||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||
axs[2, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
baseline_envelope,
|
||||
c="orange",
|
||||
)
|
||||
axs[2, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
broad_baseline,
|
||||
c="green",
|
||||
)
|
||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||
axs[3, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate,
|
||||
search_envelope,
|
||||
c="orange",
|
||||
)
|
||||
|
||||
# highpass filter envelopes
|
||||
cutoff = 5
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope, data.samplerate, cutoff=cutoff
|
||||
)
|
||||
# search_envelope = highpass_filter(
|
||||
# search_envelope, data.samplerate, cutoff=cutoff)
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope), data.samplerate, cutoff
|
||||
)
|
||||
|
||||
# search_envelope = bandpass_filter(
|
||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||
|
||||
# bandpass filter the instantaneous
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq, data.samplerate, lowf=15, highf=8000
|
||||
)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
axs[4, i].plot(
|
||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
||||
)
|
||||
|
||||
axs[5, i].plot(np.arange(len(baseline)) /
|
||||
data.samplerate, search_envelope)
|
||||
|
||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
prominence = iqr(baseline_envelope)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
baseline_envelope, prominence=prominence)
|
||||
axs[4, i].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
||||
baseline_envelope[baseline_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks search_envelope
|
||||
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
||||
axs[5, i].scatter(
|
||||
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
||||
search_envelope[search_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
np.abs(inst_freq_filtered), height=2)
|
||||
axs[6, i].scatter(
|
||||
baseline_freq_time[inst_freq_peaks],
|
||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||
c="red",
|
||||
)
|
||||
|
||||
axs[0, i].set_title("Spectrogram")
|
||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||
axs[2, i].set_title("Fitered baseline")
|
||||
axs[3, i].set_title("Fitered above")
|
||||
axs[4, i].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5, i].set_title("Search envelope")
|
||||
axs[6, i].set_title("Filtered absolute instantaneous frequency")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user