This commit is contained in:
wendtalexander 2023-01-12 14:39:14 +01:00
commit 1077558868

View File

@ -29,8 +29,8 @@ class LoadData:
def __init__(self, datapath: str) -> None:
# load raw data
file = os.path.join(datapath, "traces-grid1.raw")
self.data = DataLoader(file, 60.0, 0, channel=-1)
self.file = os.path.join(datapath, "traces-grid1.raw")
self.data = DataLoader(self.file, 60.0, 0, channel=-1)
self.samplerate = self.data.samplerate
# load wavetracker files
@ -40,6 +40,12 @@ class LoadData:
self.ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
self.ids = np.unique(self.ident[~np.isnan(self.ident)])
def __repr__(self) -> str:
return f"LoadData({self.file})"
def __str__(self) -> str:
return f"LoadData({self.file})"
def instantaneos_frequency(
signal: np.ndarray, samplerate: int
@ -62,7 +68,8 @@ def instantaneos_frequency(
# calculate instantaneos frequency with zero crossings
roll_signal = np.roll(signal, shift=1)
time_signal = np.arange(len(signal)) / samplerate
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)]
period_index = np.arange(len(signal))[(
roll_signal < 0) & (signal >= 0)][1:-1]
upper_bound = np.abs(signal[period_index])
lower_bound = np.abs(signal[period_index - 1])
@ -77,7 +84,7 @@ def instantaneos_frequency(
true_zero = lower_time + lower_ratio * time_delta
# create new time array
inst_freq_time = true_zero[1:] + 0.5 * np.diff(true_zero)
inst_freq_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
# compute frequency
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
@ -167,175 +174,204 @@ def main(datapath: str) -> None:
# load wavetracker files
time = np.load(datapath + "times.npy", allow_pickle=True)
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
powers = np.load(datapath + "sign_v.npy", allow_pickle=True)
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
# set time window # <------------------------ Iterate through windows here
window_duration = 60 * 5 * data.samplerate # 5 minutes window
window_overlap = 30 * data.samplerate # 30 seconds overlap
window_duration = 5 * data.samplerate # 5 seconds window
window_overlap = 0.5 * data.samplerate # 30 seconds overlap
raw_time = np.arange(data.shape[0])
window_starts = np.arange(
raw_time[0], raw_time[-1], window_duration - window_overlap / 2)
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
dt = 60 * data.samplerate
window_starts = np.arange(
t0, t0 + dt, window_duration - window_overlap, dtype=int)
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
dt = 60
start_index = t0 * data.samplerate
stop_index = (t0 + dt) * data.samplerate
# load region of interest of raw data file
data_oi = data[start_index:stop_index, :]
for start_index in window_starts:
# iterate through all fish
for track_id in np.unique(ident[~np.isnan(ident)])[:2]:
# make t0 and dt
t0 = start_index / data.samplerate
dt = window_duration / data.samplerate
# <------------------------------------------ Find best electrodes here
# <------------------------------------------ Iterate through electrodes
# get indices for time array in time window
window_index = np.arange(len(idx))[
(ident == track_id) & (time[idx] >= t0) & (time[idx] <= (t0 + dt))
]
# set index window
stop_index = start_index + window_duration
# filter baseline and above
freq_temp = freq[window_index]
time_temp = time[idx[window_index]]
# t0 = 3 * 60 * 60 + 6 * 60 + 43.5
# dt = 60
# start_index = t0 * data.samplerate
# stop_index = (t0 + dt) * data.samplerate
electrode = 10
# load region of interest of raw data file
data_oi = data[start_index:stop_index, :]
# initialize plot
fig, axs = plt.subplots(
7,
1,
2,
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
)
# plot spectrogram
plot_spectrogram(axs[0], data_oi[:, electrode], data.samplerate)
# plot wavetracker tracks to spectrogram
# for track_id in np.unique(ident): # <---------- Find freq gaps later
# here
# # get indices for time array in time window
# window_index = np.arange(len(idx))[
# (ident == track_id) &
# (time[idx] >= t0) &
# (time[idx] <= (t0 + dt))
# ]
# freq_temp = freq[window_index]
# time_temp = time[idx[window_index]]
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
# axs[0].set_ylim(500, 1000)
# track_id = ids
# frequency where second filter filters
search_freq = -50
# filter baseline and above
baseline, search = double_bandpass(
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
)
# plot waveform of filtered signal
axs[2].plot(np.arange(len(baseline)) / data.samplerate, baseline)
# plot instatneous frequency
# broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
# freq_temp)-5, highf=np.mean(freq_temp)+200)
baseline_freq_time, baseline_freq = instantaneos_frequency(
baseline, data.samplerate
)
axs[1].plot(baseline_freq_time, baseline_freq)
# plot waveform of filtered search signal
axs[3].plot(np.arange(len(baseline)) / data.samplerate, search)
# compute envelopes
cutoff = 25
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
axs[2].plot(
np.arange(len(baseline)) / data.samplerate,
baseline_envelope,
c="orange",
)
search_envelope = envelope(search, data.samplerate, cutoff)
axs[3].plot(
np.arange(len(baseline)) / data.samplerate,
search_envelope,
c="orange",
)
# highpass filter envelopes
cutoff = 5
baseline_envelope = highpass_filter(
baseline_envelope, data.samplerate, cutoff=cutoff
)
# search_envelope = highpass_filter(
# search_envelope, data.samplerate, cutoff=cutoff)
# envelopes of filtered envelope of filtered baseline
baseline_envelope = envelope(
np.abs(baseline_envelope), data.samplerate, cutoff
)
# search_envelope = bandpass_filter(
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
# bandpass filter the instantaneous
inst_freq_filtered = bandpass_filter(
baseline_freq, data.samplerate, lowf=15, highf=8000
)
# plot filtered and rectified envelope
axs[4].plot(
np.arange(len(baseline)) / data.samplerate, baseline_envelope
)
axs[5].plot(np.arange(len(baseline)) /
data.samplerate, search_envelope)
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
# detect peaks baseline_enelope
embed()
prominence = iqr(baseline_envelope)
baseline_peaks, _ = find_peaks(
baseline_envelope, prominence=prominence)
axs[4].scatter(
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
baseline_envelope[baseline_peaks],
c="red",
)
# detect peaks search_envelope
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
axs[5].scatter(
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
search_envelope[search_peaks],
c="red",
)
# detect peaks inst_freq_filtered
inst_freq_peaks, _ = find_peaks(np.abs(inst_freq_filtered), height=2)
axs[6].scatter(
baseline_freq_time[inst_freq_peaks],
np.abs(inst_freq_filtered)[inst_freq_peaks],
c="red",
)
axs[0].set_title("Spectrogram")
axs[1].set_title("Fitered baseline instanenous frequency")
axs[2].set_title("Fitered baseline")
axs[3].set_title("Fitered above")
axs[4].set_title("Filtered envelope of baseline envelope")
axs[5].set_title("Search envelope")
axs[6].set_title("Filtered absolute instantaneous frequency")
# iterate through all fish
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
# <------------------------------------------ Find best electrodes here
# <------------------------------------------ Iterate through electrodes
# get indices for time array in time window
window_index = np.arange(len(idx))[
(ident == track_id) & (time[idx] >= t0) & (
time[idx] <= (t0 + dt))
]
# get tracked frequencies and their times
freq_temp = freq[window_index]
powers_temp = powers[window_index, :]
# time_temp = time[idx[window_index]]
track_samplerate = np.mean(1 / np.diff(time))
expected_duration = ((t0 + dt) - t0) * track_samplerate
# check if tracked data available in this window
if len(freq_temp) < expected_duration * 0.9:
continue
# get best electrode
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
# electrode = best_electrodes[0]
# plot spectrogram
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
# plot wavetracker tracks to spectrogram
# for track_id in np.unique(ident): # <---------- Find freq gaps later
# here
# # get indices for time array in time window
# window_index = np.arange(len(idx))[
# (ident == track_id) &
# (time[idx] >= t0) &
# (time[idx] <= (t0 + dt))
# ]
# freq_temp = freq[window_index]
# time_temp = time[idx[window_index]]
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
# axs[0].set_ylim(500, 1000)
# track_id = ids
# frequency where second filter filters
search_freq = -50
# filter baseline and above
baseline, search = double_bandpass(
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
)
# plot waveform of filtered signal
axs[2, i].plot(np.arange(len(baseline)) /
data.samplerate, baseline, c="k")
# plot instatneous frequency
broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
freq_temp)-5, highf=np.mean(freq_temp)+100)
baseline_freq_time, baseline_freq = instantaneos_frequency(
baseline, data.samplerate
)
axs[1, i].plot(baseline_freq_time, baseline_freq -
np.median(baseline_freq), marker=".")
# plot waveform of filtered search signal
axs[3, i].plot(np.arange(len(baseline)) / data.samplerate, search)
# compute envelopes
cutoff = 25
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
axs[2, i].plot(
np.arange(len(baseline)) / data.samplerate,
baseline_envelope,
c="orange",
)
axs[2, i].plot(
np.arange(len(baseline)) / data.samplerate,
broad_baseline,
c="green",
)
search_envelope = envelope(search, data.samplerate, cutoff)
axs[3, i].plot(
np.arange(len(baseline)) / data.samplerate,
search_envelope,
c="orange",
)
# highpass filter envelopes
cutoff = 5
baseline_envelope = highpass_filter(
baseline_envelope, data.samplerate, cutoff=cutoff
)
# search_envelope = highpass_filter(
# search_envelope, data.samplerate, cutoff=cutoff)
# envelopes of filtered envelope of filtered baseline
baseline_envelope = envelope(
np.abs(baseline_envelope), data.samplerate, cutoff
)
# search_envelope = bandpass_filter(
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
# bandpass filter the instantaneous
inst_freq_filtered = bandpass_filter(
baseline_freq, data.samplerate, lowf=15, highf=8000
)
# plot filtered and rectified envelope
axs[4, i].plot(
np.arange(len(baseline)) / data.samplerate, baseline_envelope
)
axs[5, i].plot(np.arange(len(baseline)) /
data.samplerate, search_envelope)
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
# detect peaks baseline_enelope
prominence = iqr(baseline_envelope)
baseline_peaks, _ = find_peaks(
baseline_envelope, prominence=prominence)
axs[4, i].scatter(
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
baseline_envelope[baseline_peaks],
c="red",
)
# detect peaks search_envelope
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
axs[5, i].scatter(
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
search_envelope[search_peaks],
c="red",
)
# detect peaks inst_freq_filtered
inst_freq_peaks, _ = find_peaks(
np.abs(inst_freq_filtered), height=2)
axs[6, i].scatter(
baseline_freq_time[inst_freq_peaks],
np.abs(inst_freq_filtered)[inst_freq_peaks],
c="red",
)
axs[0, i].set_title("Spectrogram")
axs[1, i].set_title("Fitered baseline instanenous frequency")
axs[2, i].set_title("Fitered baseline")
axs[3, i].set_title("Fitered above")
axs[4, i].set_title("Filtered envelope of baseline envelope")
axs[5, i].set_title("Search envelope")
axs[6, i].set_title("Filtered absolute instantaneous frequency")
plt.show()