diff --git a/code/plot_chirps_in_chasing.py b/code/plot_chirps_in_chasing.py index 0649d83..ee43196 100644 --- a/code/plot_chirps_in_chasing.py +++ b/code/plot_chirps_in_chasing.py @@ -72,7 +72,7 @@ def main(datapath: str): bplot1 = ax.boxplot([time_precents, chirps_percents], showfliers=False, patch_artist=True) ps.set_boxplot_color(bplot1, ps.gray) - ax.set_xticklabels(['Time \nChasing', 'Chirps \nin Chasing']) + ax.set_xticklabels(['Time \nchasing', 'Chirps \nin chasing']) ax.set_ylabel('Percent') ax.scatter(np.ones(len(time_precents))*scatter_time, time_precents, facecolor=ps.white, s=size) diff --git a/poster/main.tex b/poster/main.tex index 52644c9..3cf718a 100644 --- a/poster/main.tex +++ b/poster/main.tex @@ -18,18 +18,18 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val \column{0.4} \myblock[TranspBlock]{Introduction}{ \textbf{Chirps} are the most common communication signals in weakly electric fish. They are characterized by \textbf{short frequency excursions} and are emitted during various social contexts. It is nearly impossible to reliably \textbf{detect and assign} chirps in freely interacting fish using only a Fourier transform. To overcome these limits, we developed a new method of \textbf{dynamic feature extraction} and classification. - \vspace{0cm} + \vspace{1cm} \begin{tikzfigure}[] \label{griddrawing} \includegraphics[width=\linewidth]{figs/introplot} \end{tikzfigure} } -\myblock[TranspBlock]{Chirp Detection Algorithm}{ +\myblock[TranspBlock]{Chirp detection algorithm}{ \begin{tikzfigure}[] \label{fig:alg1} \includegraphics[width=0.9\linewidth]{figs/algorithm1} \end{tikzfigure} - \vspace{0cm} + \vspace{1cm} \begin{tikzfigure}[] \label{fig:alg2} \includegraphics[width=1\linewidth]{figs/algorithm}