adding size differences
This commit is contained in:
parent
08fbb67163
commit
01f74a471e
@ -21,14 +21,19 @@ def main(datapath: str):
|
||||
|
||||
foldernames = [
|
||||
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
path_to_csv = (
|
||||
path_order_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
||||
meta_id = read_csv(path_to_csv)
|
||||
meta_id['recording'] = meta_id['recording'].str[1:-1]
|
||||
order_meta_df = read_csv(path_order_meta)
|
||||
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
||||
path_id_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv'
|
||||
id_meta_df = read_csv(path_id_meta)
|
||||
|
||||
chirps_winner = []
|
||||
size_diff = []
|
||||
chirps_loser = []
|
||||
|
||||
|
||||
for foldername in foldernames:
|
||||
# behabvior is pandas dataframe with all the data
|
||||
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||
@ -43,16 +48,52 @@ def main(datapath: str):
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
folder_name = foldername.split('/')[-2]
|
||||
winner_row = meta_id[meta_id['recording'] == folder_name]
|
||||
winner_row = order_meta_df[order_meta_df['recording'] == folder_name]
|
||||
winner = winner_row['winner'].values[0].astype(int)
|
||||
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
||||
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
||||
|
||||
groub = winner_row['group'].values[0].astype(int)
|
||||
size_rows = id_meta_df[id_meta_df['group'] == groub]
|
||||
|
||||
|
||||
if winner == winner_fish1:
|
||||
winner_fish_id = winner_row['rec_id1'].values[0]
|
||||
loser_fish_id = winner_row['rec_id2'].values[0]
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
size_diff.append(mean_size_winner - mean_size_loser)
|
||||
|
||||
elif winner == winner_fish2:
|
||||
winner_fish_id = winner_row['rec_id2'].values[0]
|
||||
loser_fish_id = winner_row['rec_id1'].values[0]
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
size_diff.append(mean_size_winner - mean_size_loser)
|
||||
|
||||
else:
|
||||
continue
|
||||
|
||||
@ -68,28 +109,31 @@ def main(datapath: str):
|
||||
print(winner_fish_id)
|
||||
print(all_fish_ids)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(10,5))
|
||||
scatterwinner = 1.15
|
||||
scatterloser = 1.85
|
||||
bplot1 = ax.boxplot(chirps_winner, positions=[
|
||||
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
||||
1], showfliers=False, patch_artist=True)
|
||||
bplot2 = ax.boxplot(chirps_loser, positions=[
|
||||
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
||||
2], showfliers=False, patch_artist=True)
|
||||
ax.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
|
||||
ax.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
|
||||
ax.set_xticklabels(['winner', 'loser'])
|
||||
ax.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax.transAxes, color= ps.white)
|
||||
ax1.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
|
||||
ax1.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
|
||||
ax1.set_xticklabels(['winner', 'loser'])
|
||||
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax1.transAxes, color= ps.white)
|
||||
|
||||
for w, l in zip(chirps_winner, chirps_loser):
|
||||
ax.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
|
||||
ax1.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
|
||||
|
||||
colors1 = ps.red
|
||||
ps.set_boxplot_color(bplot1, colors1)
|
||||
colors1 = ps.orange
|
||||
ps.set_boxplot_color(bplot2, colors1)
|
||||
ax1.set_ylabel('Chirpscounts [n]')
|
||||
|
||||
ax2.scatter(size_w, chirps_winner, color='r')
|
||||
ax2.scatter(size_l, chirps_loser, color='green')
|
||||
|
||||
ax.set_ylabel('Chirpscounts [n]')
|
||||
|
||||
plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
||||
plt.show()
|
||||
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user