adding with ittertools the combinations
This commit is contained in:
parent
363f2dd14c
commit
00d6fed161
@ -1,4 +1,4 @@
|
|||||||
import os
|
import itertools
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
@ -598,25 +598,31 @@ def main(datapath: str) -> None:
|
|||||||
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
||||||
# make index vector
|
# make index vector
|
||||||
index_vector = np.arange(len(sort_chirps_electrodes))
|
index_vector = np.arange(len(sort_chirps_electrodes))
|
||||||
|
# make it more than only two electrodes for the search after chirps
|
||||||
|
combinations_best_elctrodes = list(itertools.combinations(range(3), 2))
|
||||||
|
|
||||||
the_real_chirps = []
|
the_real_chirps = []
|
||||||
for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
||||||
if bool_vector[chirp_index] == False:
|
if bool_vector[chirp_index] == False:
|
||||||
continue
|
continue
|
||||||
else:
|
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
||||||
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
||||||
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
|
||||||
|
for combination in combinations_best_elctrodes:
|
||||||
if set([0,1]).issubset(sort_electrodes[cm]):
|
if set(combination).issubset(sort_electrodes[cm]):
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
elif set([1,0]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
elif set([0,2]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
elif set([1,2]).issubset(sort_electrodes[cm]):
|
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
"""
|
||||||
bool_vector[cm] = False
|
if set([0,1]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([1,0]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([0,2]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
elif set([1,2]).issubset(sort_electrodes[cm]):
|
||||||
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
"""
|
||||||
|
|
||||||
|
bool_vector[cm] = False
|
||||||
for ct in the_real_chirps:
|
for ct in the_real_chirps:
|
||||||
axs[0, el].axvline(ct, color='b', lw=1)
|
axs[0, el].axvline(ct, color='b', lw=1)
|
||||||
embed()
|
embed()
|
||||||
|
Loading…
Reference in New Issue
Block a user