154 lines
5.2 KiB
Python
154 lines
5.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sat Jun 5 18:14:31 2021
|
|
|
|
@author: nils
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
from numba import types
|
|
from numba.typed import Dict
|
|
from joblib import Parallel, delayed
|
|
import os
|
|
from Utility import capacitance, stimulus_init, init_dict, NumpyEncoder
|
|
from Code.Functions.Pospischil_fxns import SA_Pospischil
|
|
|
|
|
|
# model parameters
|
|
dt = 0.01
|
|
sec = 2
|
|
low = 0
|
|
high = 0.001
|
|
number_steps = 200
|
|
initial_period = 1000
|
|
num_gating = 10
|
|
num_current = 7
|
|
C, surf_area = capacitance(56.9, 1)
|
|
stim_time, I_in, stim_num, V_m = stimulus_init(low, high, number_steps, initial_period, dt, sec)
|
|
shift, scale, slope_shift, E, currents_included, b_param, g = init_dict(
|
|
np.array(['m', 'h', 'n', 'q', 'r', 'p', 's', 'u', 's_mut', 'u_mut']))
|
|
tau_max_p = 502
|
|
V_init = -70
|
|
V_T = -57.9
|
|
|
|
# initialize arrays
|
|
current = np.zeros((num_current, stim_num))
|
|
gating = np.zeros((num_gating, stim_num))
|
|
|
|
# initialize dictionary
|
|
ind_dict = Dict.empty(key_type=types.unicode_type, value_type=types.int64, )
|
|
i = 0
|
|
for var in np.array(['m', 'h', 'n', 'q', 'r', 'p', 's', 'u', 's_mut', 'u_mut']):
|
|
ind_dict[var] = i
|
|
i += 1
|
|
i = 0
|
|
for var in np.array(['Na', 'Kd', 'M', 'Kv', 'Kv_mut', 'L', 'Leak']):
|
|
ind_dict[var] = i
|
|
i += 1
|
|
|
|
# gating parameters
|
|
b_param['m'][:] = np.array([-34.33054521, -8.21450277, 1.42295686])
|
|
b_param['h'] = np.zeros(4)
|
|
b_param['h'][:] = np.array([-34.51951036, 4.04059373, 1., 0.])
|
|
b_param['n'][:] = np.array([-63.76096946, -13.83488194, 7.35347425])
|
|
b_param['q'][:] = np.array([-39.03684525, -5.57756176, 2.25190197])
|
|
b_param['r'][:] = np.array([-57.37, 20.98, 1.])
|
|
b_param['p'][:] = np.array([-45., -9.9998807337, 1.])
|
|
b_param['s'][:] = np.array([-14.16, -10.15, 1.])
|
|
b_param['u'] = np.zeros(4)
|
|
b_param['u'][:] = np.array([-31., 5.256, 1., 0.245])
|
|
b_param['s_mut'][:] = np.array([-14.16, -10.15, 1.])
|
|
b_param['u_mut'] = np.zeros(4)
|
|
b_param['u_mut'][:] = np.array([-31., 5.256, 1., 0.245])
|
|
|
|
# mut_act_Vhalf_wt = -30.01851851851851
|
|
# mut_act_k_wt = -7.7333333333333325
|
|
# s_diff_Vhalf = mut_act_Vhalf_wt - b_param['s'][0]
|
|
# s_diff_k = mut_act_k_wt - b_param['s'][1]
|
|
# b_param['s'][1] = b_param['s'][1] + s_diff_k
|
|
# b_param['u'][1] = b_param['u'][1] + s_diff_k
|
|
# b_param['s'][0] = b_param['s'][0] + s_diff_Vhalf
|
|
# b_param['u'][0] = b_param['u'][0] + s_diff_Vhalf
|
|
# b_param['s_mut'][1] = b_param['s_mut'][1] + s_diff_k
|
|
# b_param['u_mut'][1] = b_param['u_mut'][1] + s_diff_k
|
|
# b_param['s_mut'][0] = b_param['s_mut'][0] + s_diff_Vhalf
|
|
# b_param['u_mut'][0] = b_param['u_mut'][0] + s_diff_Vhalf
|
|
|
|
# reversal potentials
|
|
E["Na"] = 50.
|
|
E["K"] = -90.
|
|
E["Ca"] = 120.
|
|
E["Leak"] = -70.4
|
|
|
|
# model currents
|
|
currents_included["Na"] = True
|
|
currents_included["Kd"] = True
|
|
currents_included["Kv"] = True
|
|
currents_included["Kv_mut"] = False
|
|
currents_included["L"] = False
|
|
currents_included["M"] = True
|
|
currents_included["Leak"] = True
|
|
|
|
# model conductances
|
|
Kv_ratio = 0.10
|
|
g["Na"] = 58. * surf_area
|
|
g["Kd"] = 3.9 * (1 - Kv_ratio) * surf_area
|
|
g["M"] = 0.075 * surf_area
|
|
g["Kv"] = 3.9 * Kv_ratio * surf_area
|
|
g["Kv_mut"] = 0.
|
|
g["L"] = 0. * surf_area
|
|
g["Leak"] = 0.038 * surf_area
|
|
|
|
# save folder
|
|
folder = '../Sensitivity_Analysis/FS_Kv'
|
|
if not os.path.isdir(folder):
|
|
os.makedirs(folder)
|
|
|
|
#%% setup for one-factor-at-a-time SA
|
|
var = np.array(['m', 'h', 'n', 's', 'u'])
|
|
type_names = np.append(np.array(['shift' for i in range(var.shape[0])]),
|
|
np.array(['slope' for i in range(var.shape[0])]))
|
|
cur = np.array(['Na', 'Kd', 'Kv', 'Leak'])
|
|
type_names = np.append(type_names, np.array(['g' for i in range(cur.shape[0])]))
|
|
var = np.append(var, var)
|
|
var = np.append(var, cur)
|
|
alt_types = np.c_[var, type_names]
|
|
lin_array = np.arange(-10, 11, 1)
|
|
log_array = np.logspace(-1,1,20, base=2)
|
|
log_array = np.append(log_array,1)
|
|
|
|
# %% multiprocessing
|
|
prominence = 50
|
|
desired_AUC_width = high/5
|
|
|
|
Parallel(n_jobs=8, verbose=9)(
|
|
delayed(SA_Pospischil)(V_init, V_T, g, E, I_in, dt, currents_included, stim_time, stim_num, C, tau_max_p, shift,
|
|
scale, b_param, slope_shift, gating, current, prominence, desired_AUC_width, folder, high,
|
|
low, number_steps, initial_period, sec, lin_array, log_array, alt_types, alt_ind, alt)
|
|
for alt_ind in range(alt_types.shape[0]) for alt in range(21))
|
|
|
|
|
|
# #%% Get pd Dataframes for certain variables
|
|
# import pandas as pd
|
|
# AUC = pd.DataFrame(columns=mutations.keys())
|
|
# AUC_rel = pd.DataFrame(columns=mutations.keys())
|
|
# rheobase = pd.DataFrame(columns=mutations.keys())
|
|
# rheobase_fit = pd.DataFrame(columns=mutations.keys())
|
|
# rheobase_null_fit = pd.DataFrame(columns=mutations.keys())
|
|
|
|
# for mut in list(mutations.keys()):
|
|
# fname = os.path.join(folder, "{}.hdf5".format(mut))
|
|
# f = h5py.File(fname, "r")
|
|
# AUC['{}'.format(mut)] = f['analysis']['AUC']
|
|
# AUC_rel['{}'.format(mut)] = f['analysis']['AUC_rel']
|
|
# rheobase['{}'.format(mut)] = f['analysis']['rheobase']
|
|
# rheobase_fit['{}'.format(mut)] = f['analysis']['rheobase_fit']
|
|
# rheobase_null_fit['{}'.format(mut)] = f['analysis']['rheobase_null_fit']
|
|
|
|
# AUC.to_json(os.path.join(folder, 'AUC.json'))
|
|
# AUC_rel.to_json(os.path.join(folder, 'AUC_rel.json'))
|
|
# rheobase.to_json(os.path.join(folder, 'rheobase.json'))
|
|
# rheobase_fit.to_json(os.path.join(folder, 'rheobase_fit.json'))
|
|
# rheobase_null_fit.to_json(os.path.join(folder, 'rheobase_null_fit.json'))
|