113 lines
3.5 KiB
Python
113 lines
3.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Script to run sensitivity analysis for Cb Stellate model
|
|
|
|
"""
|
|
__author__ = "Nils A. Koch"
|
|
__copyright__ = "Copyright 2022, Nils A. Koch"
|
|
__license__ = "MIT"
|
|
|
|
import numpy as np
|
|
from numba import types
|
|
from numba.typed import Dict
|
|
from joblib import Parallel, delayed
|
|
import os
|
|
from Code.Functions.Utility_fxns import capacitance, stimulus_init, init_dict
|
|
from Code.Functions.Cb_stellate_fxns import SA_Cb_stellate
|
|
|
|
# model parameters
|
|
dt = 0.01
|
|
sec = 2
|
|
low = 0
|
|
high = 0.001
|
|
number_steps = 200
|
|
initial_period = 1000
|
|
num_gating = 9
|
|
num_current = 6
|
|
C, surf_area = capacitance(61.4, 1.50148)
|
|
variable = np.array(['m', 'h', 'n', 'n_A', 'h_A', 'n_A_mut', 'h_A_mut', 'm_T', 'h_T'])
|
|
stim_time, I_in, stim_num, V_m = stimulus_init(low, high, number_steps, initial_period, dt, sec)
|
|
shift, scale, slope_shift, E, currents_included, b_param, g = init_dict(np.array(['m', 'h', 'n', 'n_A', 'h_A', 'n_A_mut', 'h_A_mut', 'm_T', 'h_T']))
|
|
V_init = -70
|
|
|
|
# initialize arrays
|
|
current = np.zeros((num_current, stim_num))
|
|
gating = np.zeros((num_gating, stim_num))
|
|
|
|
# initialize dictionary
|
|
ind_dict = Dict.empty(key_type=types.unicode_type, value_type=types.int64, )
|
|
i = 0
|
|
for var in np.array(['m', 'h', 'n', 'n_A', 'h_A', 'n_A_mut', 'h_A_mut', 'm_T', 'h_T']):
|
|
ind_dict[var] = i
|
|
i += 1
|
|
i = 0
|
|
for var in np.array(['Na', 'Kd', 'A', 'A_mut', 'T', 'Leak']):
|
|
ind_dict[var] = i
|
|
i += 1
|
|
|
|
# gating parameters
|
|
b_param['m'][:] = np.array([-37., -3, 1])
|
|
b_param['h'] = np.zeros(4)
|
|
b_param['h'][:] = np.array([-40., 4., 1., 0])
|
|
b_param['n'][:] = np.array([-23, -5, 1])
|
|
b_param['n_A'][:] = np.array([-27, -13.2, 1.])
|
|
b_param['h_A'][:] = np.array([-80., 6.5, 1.])
|
|
b_param['n_A_mut'][:] = np.array([-27, -13.2, 1.])
|
|
b_param['h_A_mut'][:] = np.array([-80., 6.5, 1.])
|
|
b_param['m_T'][:] = np.array([-50., -3, 1.])
|
|
b_param['h_T'][:] = np.array([-68., 3.75, 1.])
|
|
|
|
|
|
# reversal potentials
|
|
E["Na"] = 55.
|
|
E["K"] = -80.
|
|
E["Ca"] = 22.
|
|
E["Leak"] = -70. # as per Molineux et al 2005 and NOT the -38 in Alexander et al 2019
|
|
|
|
# model currents
|
|
currents_included["Na"] = True
|
|
currents_included["Kd"] = True
|
|
currents_included["A_mut"] = False
|
|
currents_included["A"] = True
|
|
currents_included["T"] = True
|
|
currents_included["Leak"] = True
|
|
|
|
# model conductances
|
|
g["Na"] = 3.4 * surf_area
|
|
g["Kd"] = 9.0556 * surf_area
|
|
g["A_mut"] = 0.
|
|
g["A"] = 15.0159 * surf_area
|
|
g["T"] = 0.45045 * surf_area
|
|
g["Leak"] = 0.07407 * surf_area
|
|
|
|
|
|
# save folder
|
|
folder = '../Sensitivity_Analysis/Data/Cb_stellate'
|
|
if not os.path.isdir(folder):
|
|
os.makedirs(folder)
|
|
|
|
#%% setup for one-factor-at-a-time SA
|
|
var = np.array(['m', 'h', 'n', 'n_A', 'h_A'])
|
|
type_names = np.append(np.array(['shift' for i in range(var.shape[0])]),
|
|
np.array(['slope' for i in range(var.shape[0])]))
|
|
cur = np.array(['Na', 'Kd', 'A', 'Leak'])
|
|
type_names = np.append(type_names, np.array(['g' for i in range(cur.shape[0])]))
|
|
var = np.append(var, var)
|
|
var = np.append(var, cur)
|
|
alt_types = np.c_[var, type_names]
|
|
lin_array = np.arange(-10, 11, 1)
|
|
log_array = np.logspace(-1,1,21, base=2)
|
|
|
|
# %% multiprocessing
|
|
prominence = 50
|
|
desired_AUC_width = high/5
|
|
|
|
Parallel(n_jobs=8, verbose=9)(
|
|
delayed(SA_Cb_stellate)(V_init, g, E, I_in, dt, currents_included, stim_time, stim_num, C, shift, scale, b_param,
|
|
slope_shift,gating, current, prominence, desired_AUC_width, folder, high, low, number_steps,
|
|
initial_period, sec, lin_array, log_array, alt_types, alt_ind, alt)
|
|
for alt_ind in range(alt_types.shape[0]) for alt in range(21))
|
|
|
|
|
|
|