\begin{table}[ht!] \centering \linespread{1.5}\selectfont \fontsize{10pt}{12pt}\selectfont{ \begin{tabular}{c c c c c c } \Xhline{1\arrayrulewidth} & Gating & \(V_{1/2}\) [mV]& \(k\) & \(j\) & \(a\) \\ \Xhline{1\arrayrulewidth} %Pospischil & \(\textrm{I}_{\textrm{Na}}\) activation &-34.33054521 & -8.21450277 & 1.42295686 & --- \\ RS pyramidal, & \(\textrm{I}_{\textrm{Na}}\) inactivation &-34.51951036 & 4.04059373 & 1 & 0.05 \\ RS inhibitory, & \(\textrm{I}_{\textrm{Kd}}\) activation &-63.76096946 & -13.83488194 & 7.35347425 & --- \\ FS & \(\textrm{I}_{\textrm{L}}\) activation &-39.03684525 & -5.57756176 & 2.25190197 & --- \\ & \(\textrm{I}_{\textrm{L}}\) inactivation &-57.37 & 20.98 & 1 & --- \\ & \(\textrm{I}_{\textrm{M}}\) activation &-45 & -9.9998807337 & 1 & --- \\ %-45 with 10 mV shift to contributes to resting potential % & & & & &\\ \Xhline{1\arrayrulewidth} \(\textrm{I}_{\textrm{K}_{\textrm{V}}\textrm{1.1}}\ \) & \(\textrm{I}_{\textrm{K}_{\textrm{V}}\textrm{1.1}}\ \) activation &-30.01851852 & -7.73333333 & 1 & --- \\ & \(\textrm{I}_{\textrm{K}_{\textrm{V}}\textrm{1.1}}\ \) Inactivation &-46.85851852 & 7.67266667 & 1 & 0.245 \\ \Xhline{1\arrayrulewidth} \end{tabular}} \caption[Gating Properties]{ For comparability to typical electrophysiological data fitting reported and for ease of further gating curve manipulations, a sigmoid function (eqn.\ref{eqn:Boltz}) %Boltzmann \(x_\infty = {\left(\frac{1-a}{1+{exp[{\frac{V-V_{1/2}}{k}}]}} +a\right)^j}\) with slope \(k\), voltage for half-maximal activation or inactivation (\(V_{1/2}\)), exponent \(j\), and persistent current \(0 \leq a \leq 1\) were fitted for the \citet{pospischil_minimal_2008} models where \(\alpha_x\) and \(\beta_x\) are used. Gating parameters for \(\textrm{I}_{\textrm{K}_{\textrm{V}}\textrm{1.1}}\ \) are taken from \citet{ranjan_kinetic_2019} and fit to mean wild type parameters in \citet{lauxmann_therapeutic_2021}. Model gating parameters not listed are taken directly from source publication.} \label{tab:gating} \end{table}