# -*- coding: utf-8 -*- """ Created on Sat May 29 21:10:20 2021 @author: nils """ import numpy as np import os import h5py import json from Utility import capacitance, stimulus_init, init_dict, NumpyEncoder # model parameters dt = 0.01 sec = 2 low = 0 high = 0.001 number_steps = 200 initial_period = 1000 num_gating = 10 num_current = 7 C, surf_area = capacitance(56.9, 1) stim_time, I_in, stim_num, V_m = stimulus_init(low, high, number_steps, initial_period, dt, sec) shift, scale, slope_shift, E, currents_included, b_param, g = init_dict( np.array(['m', 'h', 'n', 'q', 'r', 'p', 's', 'u', 's_mut', 'u_mut'])) tau_max_p = 502 V_init = -70 V_T = -57.9 # initialize arrays current = np.zeros((num_current, stim_num)) gating_out = np.zeros((num_gating, stim_num)) # gating parameters b_param = {} b_param['m'] = np.array([-34.33054521, -8.21450277, 1.42295686]) b_param['h'] = np.array([-34.51951036, 4.04059373, 1., 0.]) b_param['n'] = np.array([-63.76096946, -13.83488194, 7.35347425]) b_param['q'] = np.array([-39.03684525, -5.57756176, 2.25190197]) b_param['r'] = np.array([-57.37, 20.98, 1.]) b_param['p'] = np.array([-45., -9.9998807337, 1.]) b_param['s'] = np.array([-14.16, -10.15, 1.]) b_param['u'] = np.array([-31., 5.256, 1., 0.245]) b_param['s_mut'] = np.array([-14.16, -10.15, 1.]) b_param['u_mut'] = np.array([-31., 5.256, 1., 0.245]) mut_act_Vhalf_wt = -30.01851851851851 mut_act_k_wt = -7.7333333333333325 s_diff_Vhalf = mut_act_Vhalf_wt - b_param['s'][0] s_diff_k = mut_act_k_wt - b_param['s'][1] b_param['s'][1] = b_param['s'][1] + s_diff_k b_param['u'][1] = b_param['u'][1] + s_diff_k b_param['s'][0] = b_param['s'][0] + s_diff_Vhalf b_param['u'][0] = b_param['u'][0] + s_diff_Vhalf b_param['s_mut'][1] = b_param['s_mut'][1] + s_diff_k b_param['u_mut'][1] = b_param['u_mut'][1] + s_diff_k b_param['s_mut'][0] = b_param['s_mut'][0] + s_diff_Vhalf b_param['u_mut'][0] = b_param['u_mut'][0] + s_diff_Vhalf # reversal potentials E["Na"] = 50. E["K"] = -90. E["Ca"] = 120. E["Leak"] = -70.4 # model currents currents_included["Na"] = True currents_included["Kd"] = True currents_included["Kv"] = True currents_included["Kv_mut"] = True currents_included["L"] = False currents_included["M"] = True currents_included["Leak"] = True # model conductances Kv_ratio = 0.1 g["Na"] = 58. * surf_area g["Kd"] = 3.9 * (1 - Kv_ratio) * surf_area g["M"] = 0.075 * surf_area if currents_included["Kv_mut"] == True: g["Kv"] = 3.9 * Kv_ratio / 2 * surf_area else: g["Kv"] = 3.9 * Kv_ratio / 2 * surf_area * 2 g["Kv_mut"] = 3.9 * Kv_ratio / 2 * surf_area g["L"] = 0. * surf_area g["Leak"] = 0.038 * surf_area # save folder folder = './KCNA1_mutations/FS' if not os.path.isdir(folder): os.makedirs(folder) # mutation properties mutations = json.load(open("mutations_effects_dict.json")) # prominence = 50 # # min_spike_height = 0 # desired_AUC_width = high/5 # # Parallel(n_jobs=8, verbose=9)( # delayed(Pospischil_multi)(V_init, V_T, g, E, I_in, dt, currents_included, stim_time, stim_num, C, tau_max_p, # shift, scale, b_param, slope_shift, gating_out, current, prominence, # desired_AUC_width, mutations, mut, folder, high,low, number_steps, initial_period, sec, save_gating=True) # for mut in list(mutations.keys())) #%% Get pd Dataframes for certain variables import pandas as pd AUC = pd.DataFrame(columns=mutations.keys()) AUC_rel = pd.DataFrame(columns=mutations.keys()) rheobase = pd.DataFrame(columns=mutations.keys()) rheobase_fit = pd.DataFrame(columns=mutations.keys()) rheobase_null_fit = pd.DataFrame(columns=mutations.keys()) for mut in list(mutations.keys()): fname = os.path.join(folder, "{}.hdf5".format(mut.replace(" ", "_"))) f = h5py.File(fname, "r") AUC['{}'.format(mut.replace(" ", "_"))] = f['analysis']['AUC'] AUC_rel['{}'.format(mut.replace(" ", "_"))] = f['analysis']['AUC_rel'] rheobase['{}'.format(mut.replace(" ", "_"))] = f['analysis']['rheobase'] rheobase_fit['{}'.format(mut.replace(" ", "_"))] = f['analysis']['rheobase_fit'] rheobase_null_fit['{}'.format(mut.replace(" ", "_"))] = f['analysis']['rheobase_null_fit'] top_dir = '../KCNA1_mut' model_name = 'FS' save_folder = os.path.join(top_dir, 'mut_summary_df') if not os.path.isdir(save_folder): os.makedirs(save_folder) AUC.to_json(os.path.join(save_folder, '{}_AUC.json'.format(model_name))) AUC_rel.to_json(os.path.join(save_folder, '{}_AUC_rel.json'.format(model_name))) rheobase.to_json(os.path.join(save_folder, '{}_rheobase.json'.format(model_name))) rheobase_fit.to_json(os.path.join(save_folder, '{}_rheobase_fit.json'.format(model_name))) rheobase_null_fit.to_json(os.path.join(save_folder, '{}_rheobase_null_fit.json'.format(model_name)))