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Abstract (250 Words Maximum - Currently 231)1

Ion channels determine neuronal excitability and disruption in ion channel properties in mutations2

can result in neurological disorders called channelopathies. Often many mutations are associated3

with a channelopathy, and determination of the effects of these mutations are generally done at the4

level of currents. The impact of such mutations on neuronal firing is vital for selecting personalized5

treatment plans for patients, however whether the effect of a given mutation on firing can simply be6

inferred from current level effects is unclear. The general impact of the ionic current environment7

in different neuronal types on the outcome of ion channel mutations is vital to understanding of8

the impacts of ion channel mutations and effective selection of personalized treatments. Using a9

diverse collection of neuronal models, the effects of changes in ion current properties on firing is10

assessed sytematically and for episodic ataxia type 1 associated KV1.1 mutations. The effects of11

ion current property changes or mutations on firing is dependent on the current environment, or cell12

type, in which such a change occurs in. Characterization of ion channel mutations as loss or gain of13

function is useful at the level of the ionic current, however the effects of channelopathies on firing14

is dependent on cell type. To further the efficacy of personalized medicine in channelopathies, the15

effects of ion channel mutations must be examined in the context of the appropriate cell types.16
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Significant Statement (120 Words Maximum - Currently 105)17

Ion channels determine neuronal excitability and mutations that alter ion channel properties result18

in neurological disorders called channelopathies. Although the genetic nature of such mutations19

as well as their effects on the ion channel’s biophysical properties are routinely assessed exper-20

imentally, determination of the role in altering neuronal firing is more difficult. Computational21

modelling bridges this gap and demonstrates that the cell type in which a mutation occurs is an22

important determinant in the effects of firing. As a result, classification of ion channel mutations23

as loss or gain of function is useful to describe the ionic current but should not be blindly extended24

to firing.25

Introduction (750 Words Maximum - Currently 673)26

Neuronal ion channels are vital in determining neuronal excitability, action potential generation and27

firing patterns (Bernard and Shevell, 2008; Carbone and Mori, 2020). In particular, the properties28

and combinations of ion channels and their resulting currents determine the firing properties of29

the neuron (Pospischil et al., 2008; Rutecki, 1992). However, ion channel function can be disturb30

resulting in altered ionic current properties and altered neuronal firing behaviour (Carbone and31

Mori, 2020). Ion channel mutations are a common cause of such channelopathies and are often32

associated with hereditary clinical disorders (Bernard and Shevell, 2008; Carbone and Mori, 2020).33

The effects of these mutations are frequently determined at a biophysical level, however assessment34

of the impact of mutations on neuronal firing and excitability is more difficult. Experimentally,35

transfection of cell cultures or the generation of mutant mice lines are common approaches. Cell36

culture transfection does not replicate the exact interplay of endogenous currents nor does it take37

into account the complexity of the nervous system including factors such as expression patterns,38

intracellular regulation and modulation of ion channels as well as network effects. Transfected39
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currents are characterized in isolation and the role of these isolated currents in the context of other40

currents in a neuron cannot be definitively inferred. The effects of individual currents in vivo also41

depend on the neuron type they are expressed in and which roles these neurons have in specific42

circuits. Complex interactions between different cell types in vivo are neglected in transfected cell43

culture. Additionally, transfected currents are not present with the neuron-type specific cellular44

machinery present in vivo and are even transfected in cells of different species. Furthermore, culture45

conditions can shape ion channel expression (Ponce et al., 2018).46

The generation of mice lines is costly and behavioural characterization of new mice lines is required47

to assess similarities to patient symptoms. Although the generation of mouse lines is desirable for a48

clinical disorder characterized by a specific ion channel mutation, this approach becomes impracti-49

cal for disorders associated with a collection of distinct mutations in a single ion channel. Because50

of the lack of adequate experimental approaches, a great need is present for the ability to assess51

the impacts of ion channel mutations on neuronal firing. A more general understanding of the ef-52

fects of changes in current properties on neuronal firing may help to understand the impacts of ion53

channel mutations. Specifically, modelling approaches can be used to assess the impacts of current54

property changes on firing behaviour, bridging the gap between changes in the biophysical prop-55

erties induced by mutations and clinical symptoms. Conductance-based neuronal models enable56

insight into the effects of ion channel mutations with specific effects of the resulting ionic current57

as well as enabling in silico assessment of the relative effects of changes in biophysical proper-58

ties of ionic currents on neuronal firing . The effects of altered voltage-gated potassium channel59

KV1.1 function is of particular interest in this study as it gives rise to the IKV 1.1 current and is60

associated with episodic ataxia type 1. Furthermore, modelling approaches enable predictions of61

the effects of specific mutation and drug induced biophysical property changes.62

KV1.1 channels, encoded by the KCNA1 gene, play a role in repolarizing the action potential, neu-63

ronal firing patterns, neurotransmitter release, and saltatory conduction (D’Adamo et al., 1998) and64

3



are expressed throughout the CNS (Tsaur et al., 1992; Veh et al., 1995; Wang et al., 1994). Altered65

KV1.1 channel function as a result of KCNA1 mutations in humans is associated with episodic66

ataxia type 1 (EA1) which is characterized by period attacks of ataxia and persistent myokymia67

(Parker, 1946; Van Dyke et al., 1975). Onset of EA1 is before 20 years of age (Brunt and van68

Weerden, 1990; Jen et al., 2007; Rajakulendran et al., 2007; Van Dyke et al., 1975) and is associ-69

ated with a 10 times higher prevalence of epiletic seizures(Zuberi et al., 1999). EA1 significantly70

impacts patient quality of life (Graves et al., 2014). KV1.1 null mice have spontaneous seizures71

without ataxia starting in the third postnatal week although impaired balance has been reported72

(Smart et al., 1998; Zhang et al., 1999) and neuronal hyperexcitability has been demonstrated in73

these mice (Brew et al., 2003; Smart et al., 1998). However, the lack of ataxia in KV1.1 null mice74

raises the question if the hyperexcitability seen is representative of the effects of EA1 associated75

KV1.1 mutations.76

Using a diverse set of conductance-based neuronal models we examine the role of current environ-77

ment on the impact of alterations in channels properties on firing behavior generally and for EA178

associated KV1.1 mutations.79

Materials and Methods80

All modelling and simulation was done in parallel with custom written Python 3.8 software, run on81

a Cent-OS 7 server with an Intel(R) Xeon (R) E5-2630 v2 CPU.82

Different Cell Models83

A group of neuronal models representing the major classes of cortical and thalamic neurons includ-84

ing regular spiking pyramidal (RS pyramidal), regular spiking inhibitory (RS inhibitory), and fast85
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spiking (FS) cells were used (Pospischil et al., 2008). To each of these models, a KV1.1 current86

(IKV 1.1; (Ranjan et al., 2019)) was added. A cerebellar stellate cell model from (Alexander et al.,87

2019) is used (Cb Stellate). This model was also used with a KV1.1 current (IKV 1.1; (Ranjan et al.,88

2019)) in addition to the A-type potassium current (Cb stellate +KV1.1 ) or replacing the A-type89

potassium current (Cb stellate ∆KV1.1 ). A subthalamic nucleus neuron model as described by90

(Otsuka et al., 2004) are used (STN) and with a KV1.1 current (IKV 1.1; (Ranjan et al., 2019)) in91

addition to the A-type potassium current (STN +KV1.1 ) or replacing the A-type potassium current92

(STN ∆KV1.1 ). The properties and conductances of each model are detailed in Table 1 and the93

gating properties are unaltered from the original models. The properties of IKV 1.1 were fitted to94

the mean wild type biophysical parameters of KV1.1 (Lauxmann et al., 2021).95

RS
Pyra-
midal

RS
Inhib-
itory

FS
Cb

Stellate

Cb
Stellate
+KV1.1

Cb
Stellate
∆KV1.1

STN
STN

+KV1.1
STN

∆KV1.1

gNa 56 10 58 3.4 3.4 3.4 49 49 49
gK 5.4 1.89 3.51 9.0556 8.15 9.0556 57 56.43 57

gKV 1.1 0.6 0.21 0.39 - 0.90556 1.50159 - 0.57 0.5
gA - - - 15.0159 15.0159 - 5 5 -
gM 0.075 0.0098 0.075 - - - - - -
gL - - - - - - 5 5 5
gT - - - 0.45045 0.45045 0.45045 5 5 5

gCa,K - - - - - - 1 1 1
gLeak 0.0205 0.0205 0.038 0.07407 0.07407 0.07407 0.035 0.035 0.035
τmaxM

608 934 502 - - - - - -
Cm 118.44 119.99 101.71 177.83 177.83 177.83 118.44 118.44 118.44

Table 1: Cell properties and conductances of regular spiking pyramidal neuron (RS Pyramidal),
regular spiking inhibitory neuron (RS Inhibitory), fast spiking neuron (FS), cerebellar stellate cell
(Cb Stellate), with additional IKV 1.1 (Cb Stellate ∆KV1.1 ) and with IKV 1.1 replacement of IA (Cb
Stellate ∆KV1.1 ), and subthalamic nucleus neuron (STN), with additional IKV 1.1 (STN ∆KV1.1 )
and with IKV 1.1 replacement of IA (STN KV1.1 ) models. All conductances are given in mS/cm2.
Capacitances (Cm) and τmaxp are given in pF and ms respectively.
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Firing Frequency Analysis96

The membrane responses to 200 equidistant two second long current steps were simulated using97

the forward-Euler method with a ∆t = 0.01ms from steady state. Current steps ranged from 098

to 1 nA for all models except for the RS inhibitory neuron models where a range of 0 to 0.3599

nA was used to ensure repetitive firing across the range of input currents. For each current step,100

action potentials were detected as peaks with at least 50 mV prominence and a minimum interspike101

interval of 1 ms. The interspike interval was computed and used to determine the instantaneous102

firing frequencies elicited by the current step. The steady-state firing frequency were defined as the103

mean firing frequency in 0.5 seconds after the first action potential in the last second of the current104

step respectively and was used to construct frequency-current (fI) curves.105

The smallest current at which steady state firing occurs was identified and the current step interval106

preceding the occurrence of steady state firing was simulated at higher resolution (100 current107

steps) to determine the current at which steady state firing began. Firing was simulated with 100108

current steps from this current upwards for 1/5 of the overall current range. Over this range a fI109

curve was constructed and the integral, or area under the curve (AUC), of the fI curve over this110

interval was computed with the composite trapezoidal rule and used as a measure of firing rate111

independent from rheobase.112

To obtain the rheobase, the current step interval preceding the occurrence of action potentials was113

explored at higher resolution with 100 current steps spanning the interval. Membrane responses to114

these current steps were then analyzed for action potentials and the rheobase was considered the115

lowest current step for which an action potential was elicited.116

All models exhibit tonic firing and any instances of bursting were excluded to simplify the charac-117

terization of firing.118
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Sensitivity Analysis and Comparison of Models119

Current properties of currents common to all models (INa, IK , IA/IKV 1.1, and ILeak) were system-120

atically altered in a one-factor-at-a-time sensitivity analysis for all models. The gating curves for121

each current were shifted (∆V1/2) from -10 to 10 mV in increments of 1 mV. The slope (k) of the122

gating curves were altered from half to twice the initial slope. Similarly, the maximal current con-123

ductance (g) was also scaled from half to twice the initial value. For both slope and conductance124

alterations, alterations consisted of 21 steps spaced equally on a log2 scale.125

Model Comparison126

Changes in rheobase (∆rheobase) are calculated in relation to the original model rheobase. The

contrast of each AUC value (AUCi) was computed in comparison to the AUC of the unaltered wild

type model (AUCwt)

AUCcontrast =
AUCi −AUCwt

AUCwt
(1)

To assess whether the effects of a given alteration on AUCcontrast or ∆rheobase are robust across127

models, the correlation between AUCcontrast or ∆rheobase and the magnitude of current property128

alteration was computed for each alteration in each model and compared across alteration types.129

The Kendall’s τ coefficient, a non-parametric rank correlation, is used to describe the relationship130

between the magnitude of the alteration and AUC or rheobase values. A Kendall τ value of -1 or 1131

is indicative of monotonically decreasing and increasing relationships respectively.132

KCNA1/KV1.1 Mutations133

Known episodic ataxia type 1 associated KCNA1 mutations and their electrophysiological charac-134

terization reviewed in (Lauxmann et al., 2021). The mutation-induced changes in IKV 1.1 amplitude135

and activation slope (k) were normalized to wild type measurements and changes in activation V1/2136

were used relative to wild type measurements. The effects of a mutation were also applied to IA137
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when present as both potassium currents display prominent inactivation. In all cases, the muta-138

tion effects were applied to half of the IKV 1.1 or IA under the assumption that the heterozygous139

mutation results in 50% of channels carrying the mutation. Frequency-current curves for each mu-140

tation in each model were obtained through simulation and used to characterize firing behaviour as141

described above. For each model the differences in mutation AUC to wild type AUC were normal-142

ized by wild type AUC (AUCcontrast) and mutation rheobases are compared to wild type rheobase143

values (∆rheobase). Pairwise Kendall rank correlations (Kendall τ ) are used to compare the the144

correlation in the effects of KV1.1 mutations on AUC and rheobase between models.145

Code Accessibility146

The code/software described in the paper is freely available online at [URL redacted for double-147

blind review]. The code is available as Extended Data.148

Results149

Firing Characterization150

The quantification of the fI curve using the AUC is seen in Figure 1A. The characterization of151

firing with AUC and rheobase is seen in Figure 1B, where the upper left quadrant (+∆AUC152

and -∆rheobase) indicate an increase in firing, whereas the bottom right quadrant (-∆AUC and153

+∆rheobase) is indicative of decreased firing. In the lower left and upper right quadrants, the154

effects on firing are more nuance and cannot easily be described as a gain or loss of excitability.155

The diversity in the neuronal models used is seen in Figure 2. Considerable variability is seen156

across neuronal models both in representative spike trains and their fI curves. The models chosen157

all fire repetitively and do not exhibit bursting. Some models, such as Cb stellate and RS inhibitory158

models, display type I firing whereas others such as Cb stellate ∆KV1.1and STN models have159

type II firing. Other models lie on a continuum between these prototypical firing classifications.160
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Figure 1: Characterization of firing with AUC and rheobase. (A) The area under the curve (AUC) of
the repetitive firing frequency-current (fI) curve. (B) Changes in firing as characterized by ∆AUC
and ∆rheobase occupy 4 quadrants separated by no changes in AUC and rheobase. Representative
schematic fI curves in blue with respect to a reference fI curve (black) depict the general changes
associated with each quadrant.

Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes with161

different thresholds as shown by the green and red markers in Figure 2 respectively.162

Sensitivity analysis163

A one-factor-a-time sensitivity analysis enables the comparison of a given alteration in current164

parameters across models. The effect of changes in gating V1/2 and slope factor k as well as the165

current conductance on AUC is shown in Figure 3 A, B and C respectively. Heterogeneity in166
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Figure 2: Diversity in Neuronal Model Firing. Spike trains (left), frequency-current (fI) curves
(right) for Cb stellate (A), RS inhibitory (B), FS (C), RS pyramidal (D), RS inhibitory +KV1.1 (E),
Cb stellate +KV1.1 (F), FS +KV1.1 (G), RS pyramidal +KV1.1 (H), STN +KV1.1 (I), Cb stellate
∆KV1.1(J), STN ∆KV1.1(K), and STN (L) neuron models. Black marker on the fI curves indicate
the current step at which the spike train occurs. The green marker indicates the current at which
firing begins in response to an ascending current ramp, whereas the red marker indicates the current
at which firing ceases in response to a descending current ramp (see Figure 2-1).
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the correlation between gating and conductance changes and AUC occurs across models for most167

currents. In these cases some of the models display non-monotonic relationships168

(i.e. |Kendall τ | ̸= 1). However, shifts in A current activation V1/2, changes in KV1.1 activation169

V1/2 and slope, and changes in A current conductance display consistent monotonic relationships170

across models.171
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Figure 3: The Kendall rank correlation (Kendall τ ) coefficients between shifts in V1/2 and AUC,
slope factor k and AUC as well as current conductances and AUC for each model are shown on
the right in (A), (B) and (C) respectively. The relationships between AUC and ∆V1/2, slope (k)
and conductance (g) for the Kendall τ coefficients highlights by the black box are depicted in the
middle panel. The fI curves corresponding to one of the models are shown in the left panels.

The effect of changes in gating V1/2 and slope factor k as well as the current conductance on172

rheobase is shown in Figure 4 A, B and C respectively. Shifts in half activation of gating properties173

are similarly correlated with rheobase across models, however Kendall τ values departing from -1174
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indicate non-monotonic relationships between K current V1/2 and rheobase in some models (Fig-175

ure 4A) Changes in Na current inactivation, KV1.1 current inactivation and A current activation176

have affect rheobase with positive and negative correlations in different models (Figure 4B). De-177

partures from monotonic relationships occur in some models as a result of K current activation,178

KV1.1 current inactivation and A current activation in some models. Current conductance magni-179

tude alterations affect rheobase similarly across models (Figure 4C).180
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Figure 4: The Kendall rank correlation (Kendall τ ) coefficients between shifts in V1/2 and rheobase,
slope factor k and AUC as well as current conductances and rheobase for each model are shown
on the right in (A), (B) and (C) respectively. The relationships between rheobase and ∆V1/2, slope
(k) and conductance (g) for the Kendall τ coefficients highlights by the black box are depicted in
the middle panel. The fI curves corresponding to one of the models are shown in the left panels.
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KV1.1181

The changes in AUC and rheobase from wild-type values for reported episodic ataxia type 1 (EA1)182

associated KV1.1 mutations are seen in every model containing KV1.1 in Figure 5A-I. Pairwise183

non-parametric Kendall τ rank correlations between the simulated effects of these KV1.1 mutations184

on rheobase and AUC in different models are seen in Figure 5 J and K respectively. The effects of185

EA1 associated KV1.1 mutations on rheobase are highly correlated across models. The effects of186

the KV1.1 mutations on AUC are more heterogenous as reflected by both weak and strong positive187

and negative correlations between models Figure 5K188
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Figure 5: Effects of episodic ataxia type 1 associated KV1.1 mutations on firing. Effects of
KV1.1 mutations on AUC (AUCcontrast) and rheobase (∆rheobase) compared to wild type for
RS pyramidal +KV1.1 (A), RS inhibitory +KV1.1 (B), FS +KV1.1 (C), Cb stellate (D), Cb stel-
late +KV1.1 (E), Cb stellate ∆KV1.1(F), STN (G), STN +KV1.1 (H) and STN ∆KV1.1(I) mod-
els V174F, F414C, E283K, and V404I mutations are highlighted in color for each model. Pair-
wise Kendall rank correlation coefficients (Kendall τ ) between the effects of KV1.1 mutations on
rheobase and on AUC are shown in J and K respectively.

Discussion (3000 Words Maximum - Currently 1559)189

Using a set of diverse conductance-based neuronal models, the effects of changes to current prop-190

erties and conductances on firing were determined to be heterogenous for the AUC of the steady191

state fI curve but more homogenous for rheobase. For a known channelopathy, episodic ataxia type192

1 associated KV1.1 mutations, the effects on rheobase is consistent across cell types, whereas the193
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effect on AUC is cell type dependent.194

Validity of Neuronal Models195

The KV1.1 model from (Ranjan et al., 2019) is based on expression of only KV1.1 in CHO cells196

and represents the biophysical properties of KV1.1 homotetramers and not heteromers. Thus the197

KV1.1 model used here neglects the complex reality of these channels in vivo including their ex-198

pression as heteromers and the altered biophyiscal properties of these heteromers (Coleman et al.,199

1999; Isacoff et al., 1990; Rettig et al., 1994; Roeper et al., 1998; Ruppersberg et al., 1990; Wang200

et al., 1999). Furthermore, dynamic modulation of KV1.1 channels, although physiologically rel-201

evant, is neglected here. For example, KVβ2 plays a role in KV 1 channel trafficking and cell202

membrane expression (Campomanes et al., 2002; Manganas et al., 2001; Shi et al., 2016) and203

KV1.1 phosphorylation increases cell membrane KV1.1 (Jonas and Kaczmarek, 1996). It should204

be noted that the discrete classification of potassium currents into delayed rectifier and A-type is205

likely not biological, but rather highlights the characteristics of a spectrum of potassium channel206

inactivation that arises in part due to additional factors such as heteromer composition (Glasscock,207

2019; Stühmer et al., 1989), non-pore forming subunits (e.g. KVβ subunits) (Rettig et al., 1994;208

Xu and Li, 1997), and temperature (Ranjan et al., 2019) modulating channel properties.209

Additionally, the single-compartment model does not take into consideration differential effects210

on neuronal compartments (i.e. axon, soma, dendrites), possible different spatial cellular distribu-211

tion of channel expression across and within these neuronal compartments or across CNS regions212

nor does it consider different channel types (e.g NaV1.1 vs NaV1.8). More realistic models would213

consist of multiple compartments, take more currents into account and take the spatial distribution214

of channels into account, however these models are more computationally expensive, require cur-215

rent specific models and knowledge of the distribution of conductances across the cell. Despite216

these limitations, each of the models can reproduce physiological firing behaviour of the neurons217
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they represent (Alexander et al., 2019; Otsuka et al., 2004; Pospischil et al., 2008) and capture key218

aspects of the dynamics of these cell types.219

Current Environments Determine the Effect of Ion Channel Mutations220

One-factor-at-a-time (OFAT) sensitivity analyses such as the one performed here are predicated221

on assumptions of model linearity, and cannot account for interactions between factors (Czitrom,222

1999; Saltelli and Annoni, 2010). OFAT approaches are local and not global (i.e. always in refer-223

ence to a baseline point in the parameter space) and therefore cannot be generalized to the global224

parameter space unless linearity and additivity are met (Saltelli and Annoni, 2010). The local225

space around the wild type neuron is explored with an OFAT sensitivity analysis without taking in-226

teractions between parameters into account. Comparisons between the effects of changes in similar227

parameters across different models can be made at the wild type locale indicative of experimentally228

observed neuronal behaviour. In this case, the role of deviations in the ionic current properties from229

their wild type in multiple neuronal models presented here provides a starting point for understand-230

ing the general role of these current properties in neurons. However, a more global approach would231

provide a more holistic understanding of the parameter space and provide insight into interactions232

between properties.233

Although, to our knowldege, no comprehensive evaluation of how current environment and cell234

type affect the outcome of ion channel mutations, comparisons between the effects of such mu-235

tations in certain cells have been reported. For instance, mutations in the SCN1A gene encoding236

NaV1.1 result in epileptic phenotypes by selective hypoexcitability of inhibitory but not excitatory237

neurons in the cortex resulting in circuit hyperexcitability (Hedrich et al., 2014). Additionallly,238

the L858H mutation in NaV1.7, associated with erythermyalgia, has been shown to cause hypoex-239

citability in sympathetic ganglion neurons and hyperexcitability in dorsal root ganglion neurons240

(Rush et al., 2006; Waxman, 2007). The differential effects of L858H NaV1.7 on firing is depen-241
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dent on the presence or absence of another sodium channel NaV1.8 (Rush et al., 2006; Waxman,242

2007). In a modelling study, it was found that altering the sodium conductance in 2 stomatogastric243

ganglion neuron models from a population models decreases rheobase in both models, however244

the initial slope of the fI curves (proportional to AUC) is increased in one model and decreased245

in the other suggesting that the magnitude of other currents in these models (such as Kd) deter-246

mines the effect of a change in sodium current (Kispersky et al., 2012). These findings, in concert247

with our findings suggest that the current environment in which a channelopathy occurs is vital in248

determining the outcomes of the channelopathy on firing.249

Cell type specific differences in current properties are important in the effects of ion channel mu-250

tations, however within a cell type heterogeneity in channel expression levels exists and it is often251

desirable to generate a population of neuronal models and to screen them for plausibility to bi-252

ological data in order to capture neuronal population diversity (Marder and Taylor, 2011). The253

models used here are generated by characterization of current gating properties and by fitting of254

maximal conductances to experimental data. This practice of fixing maximal conductances based255

on experimental data is limiting as it does not reproduce the variability in channel expression and256

neuronal firing behaviour of a heterogeneous neuron population (Verma et al., 2020). For exam-257

ple, a model derived from the mean conductances in a sub-population of stomatogastric ganglion258

”one-spike bursting” neurons fires 3 spikes instead of 1 per burst due to an L shaped distribution259

of sodium and potassium conductances (Golowasch et al., 2002). Multiple sets of current con-260

ductances can give rise to the same patterns of activity also termed degeneracy and differences in261

neuronal dynamics may only be evident with perturbations (Goaillard and Marder, 2021; Marder262

and Taylor, 2011). Variability in ion channel expression often correlates with the expression of263

other ion channels (Goaillard and Marder, 2021) and neurons whose behaviour is similar may pos-264

sess correlated variability across different ion channels resulting in stability in neuronal phenotype265

(Lamb and Calabrese, 2013; Soofi et al., 2012; Taylor et al., 2009). The variability of ion currents266
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and degeneracy of neurons may account, at least in part, for the observation that the effect of toxins267

within a neuronal type is frequently not constant (Khaliq and Raman, 2006; Puopolo et al., 2007;268

Ransdell et al., 2013).269

Effects of KCNA1 Mutations270

Moderate changes in delayed rectifier potassium currents change the bifurcation structure of271

Hodgkin Huxley model, with changes analogous to those seen with KV1.1 mutations resulting in272

increased excitability due to reduced thresholds for repetitive firing (Hafez and Gottschalk, 2020).273

Although the Hodgkin Huxley delayed rectifier lacks inactivation, the increases in excitability seen274

are in line with both score-based and simulation-based predictions of the outcomes of KCNA1 mu-275

tations. Recently, (Zhao et al., 2020) predicted in silico that the depolarizing shifts seen as a result276

of KCNA1 mutations broaden action potentials and interfere negatively with high frequency action277

potential firing. However, comparability of firing rates is lacking in this study. Furthermore the278

increased excitability seen experimentally with KV1.1 null mice (Smart et al., 1998; Zhou et al.,279

1998), with pharmacological KV1.1 block (Chi and Nicol, 2007; Morales-Villagrán et al., 1996),280

by (Hafez and Gottschalk, 2020) and with score-based and simulation-based predictions of KCNA1281

mutations are contrary to the claims of (Zhao et al., 2020). LOF KCNA1 mutations generally in-282

crease neuronal excitability, however the different effects of KCNA1 mutations across models on283

AUC are indicative that a certain cell type specific complexity exists.284

Different current properties, such as the difference in IA and IKV 1.1 in the Cb stellate and STN285

model families alter the impact of KCNA1 mutations on firing highlighting that knowledge of the286

biophysical properties of a current and its neuronal expression is vital for holistic understanding of287

the effects of a given ion channel mutation both at a single cell and network level.288
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Loss or Gain of Function Characterizations Do Not Fully Capture Ion Channel Mu-289

tation Effects on Firing290

The effects of changes in current properties depend in part on the neuronal model in which they291

occur and can be seen in the variance of correlations (especially in AUC) across models for a292

given current property change. Therefore, relative conductances and gating properties of currents293

in the current environment in which an alteration in current properties occurs plays an important294

role in determining the outcome on firing. The use of loss of function (LOF) and gain of function295

(GOF) is useful at the level of ion channels and whether a mutation results in more or less ionic296

current, however the extension of this thinking onto whether mutations induce LOF or GOF at the297

level of neuronal firing based on the ionic current LOF/GOF is problematic due to the dependency298

of neuronal firing changes on the current environment. Thus the direct leap from current level299

LOF/GOF characterizations to effects on firing without experimental or modelling-based evidence,300

although tempting, should be refrained from and viewed with caution when reported. This is301

especially relevant in the recent development of personalized medicine for channelopathies, where302

a patients specific channelopathy is identified and used to tailor treatments (Ackerman et al., 2013;303

Gnecchi et al., 2021; Helbig and Ellis, 2020; Weber et al., 2017). However, the effects of specific304

ion channel mutations are often characterized in expression systems and classified as LOF or GOF305

to aid in treatment decisions (Brunklaus et al., 2022; Johannesen et al., 2021; Musto et al., 2020).306

However, this approach must be used with caution and the cell type which expressed the mutant ion307

channel must be taken into account. Experimental assessment of the effects of a patients specific ion308

channel mutation in vivo is not feasible at a large scale due to time and cost constraints, modelling309

of the effects of patient specific channelopathies is a desirable approach. Accordingly, for accurate310

modelling and predictions of the effects of mutations on neuronal firing, information as to the type311

of neurons containing the affected channel, and the properties of the affected and all currents in312

the affected neuronal type is needed. When modelling approaches are sought out to overcome the313
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limitations of experimental approaches, care must be taken to account for model dependency and314

the generation of relevant cell-type or cell specific populations of models should be standard in315

assessing the effects of mutations in specific neurons.316

References317

Ackerman, M. J., Marcou, C. A. and Tester, D. J. (2013), ‘Personalized Medicine: Genetic Diagno-318

sis for Inherited Cardiomyopathies/Channelopathies’, Revista Española de Cardiologı́a (English319
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Figure/Table/Extended Data Legends564

Figure 1: Characterization of firing with AUC and rheobase. (A) The area under the curve (AUC) of
the repetitive firing frequency-current (fI) curve. (B) Changes in firing as characterized by ∆AUC
and ∆rheobase occupy 4 quadrants separated by no changes in AUC and rheobase. Representative
schematic fI curves in blue with respect to a reference fI curve (black) depict the general changes
associated with each quadrant.

Figure 2: Diversity in Neuronal Model Firing. Spike trains (left), frequency-current (fI) curves
(right) for Cb stellate (A), RS inhibitory (B), FS (C), RS pyramidal (D), RS inhibitory +KV1.1 (E),
Cb stellate +KV1.1 (F), FS +KV1.1 (G), RS pyramidal +KV1.1 (H), STN +KV1.1 (I), Cb stellate
∆KV1.1(J), STN ∆KV1.1(K), and STN (L) neuron models. Black marker on the fI curves indicate
the current step at which the spike train occurs. The green marker indicates the current at which
firing begins in response to an ascending current ramp, whereas the red marker indicates the current
at which firing ceases in response to a descending current ramp.

Figure 3: The Kendall rank correlation (Kendall τ ) coefficients between shifts in V1/2 and AUC,
slope factor k and AUC as well as current conductances and AUC for each model are shown on
the right in (A), (B) and (C) respectively. The relationships between AUC and ∆V1/2, slope (k)
and conductance (g) for the Kendall τ coefficients highlights by the black box are depicted in the
middle panel. The fI curves corresponding to one of the models are shown in the left panels.

Figure 4: The Kendall rank correlation (Kendall τ ) coefficients between shifts in V1/2 and rheobase,
slope factor k and AUC as well as current conductances and rheobase for each model are shown
on the right in (A), (B) and (C) respectively. The relationships between rheobase and ∆V1/2, slope
(k) and conductance (g) for the Kendall τ coefficients highlights by the black box are depicted in
the middle panel. The fI curves corresponding to one of the models are shown in the left panels.

Figure 5: Effects of episodic ataxia type 1 associated KV1.1 mutations on firing. Effects of
KV1.1 mutations on AUC (AUCcontrast) and rheobase (∆rheobase) compared to wild type for
RS pyramidal +KV1.1 (A), RS inhibitory +KV1.1 (B), FS +KV1.1 (C), Cb stellate (D), Cb stel-
late +KV1.1 (E), Cb stellate ∆KV1.1(F), STN (G), STN +KV1.1 (H) and STN ∆KV1.1(I) mod-
els V174F, F414C, E283K, and V404I mutations are highlighted in color for each model. Pair-
wise Kendall rank correlation coefficients (Kendall τ ) between the effects of KV1.1 mutations on
rheobase and on AUC are shown in J and K respectively.
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Tables565

RS
Pyra-
midal

RS
Inhib-
itory

FS
Cb

Stellate

Cb
Stellate
+KV1.1

Cb
Stellate
∆KV1.1

STN
STN

+KV1.1
STN

∆KV1.1

gNa 56 10 58 3.4 3.4 3.4 49 49 49
gK 5.4 1.89 3.51 9.0556 8.15 9.0556 57 56.43 57

gKV 1.1 0.6 0.21 0.39 - 0.90556 1.50159 - 0.57 0.5
gA - - - 15.0159 15.0159 - 5 5 -
gM 0.075 0.0098 0.075 - - - - - -
gL - - - - - - 5 5 5
gT - - - 0.45045 0.45045 0.45045 5 5 5

gCa,K - - - - - - 1 1 1
gLeak 0.0205 0.0205 0.038 0.07407 0.07407 0.07407 0.035 0.035 0.035
τmaxM

608 934 502 - - - - - -
Cm 118.44 119.99 101.71 177.83 177.83 177.83 118.44 118.44 118.44

Table 1: Cell properties and conductances of regular spiking pyramidal neuron (RS Pyramidal),
regular spiking inhibitory neuron (RS Inhibitory), fast spiking neuron (FS), cerebellar stellate cell
(Cb Stellate), with additional IKV 1.1 (Cb Stellate ∆KV1.1 ) and with IKV 1.1 replacement of IA (Cb
Stellate ∆KV1.1 ), and subthalamic nucleus neuron (STN), with additional IKV 1.1 (STN ∆KV1.1 )
and with IKV 1.1 replacement of IA (STN KV1.1 ) models. All conductances are given in mS/cm2.
Capacitances (Cm) and τmaxp are given in pF and ms respectively.

Extended Data566

Extended Data 1: TODO: Caption for code in zip file.
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A Cb stellate B RS Inhibitory

C FS D RS Pyramidal

E RS Inhibitory +KV1.1 F Cb stellate +KV1.1

G FS +KV1.1 H RS Pyramidal +KV1.1

I STN +KV1.1 J Cb stellate KV1.1

K STN KV1.1

25 mV 1 s

L STN

Figure 2-1: Diversity in Neuronal Model Firing Responses to a Current Ramp. Spike trains for Cb
stellate (A), RS inhibitory (B), FS (C), RS pyramidal (D), RS inhibitory +KV1.1 (E), Cb stellate
+KV1.1 (F), FS +KV1.1 (G), RS pyramidal +KV1.1 (H), STN +KV1.1 (I), Cb stellate ∆KV1.1(J),
STN ∆KV1.1(K), and STN (L) neuron models in response to a slow ascending current ramp fol-
lowed by the descending version of the current ramp. The current at which firing begins in response
to an ascending current ramp and the current at which firing ceases in response to a descending cur-
rent ramp are depicted on the frequency current (fI) curves in Figure 2 for each model.
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