From c8df08c34d1e8558a26792cb8be5ec367546dd55 Mon Sep 17 00:00:00 2001 From: nkoch1 Date: Wed, 2 Mar 2022 23:31:16 -0500 Subject: [PATCH] Minor figure updates 02.03.2022 --- Figures/AUC_correlation.py | 10 ++-------- Figures/diversity_in_firing.py | 2 +- Figures/firing_characterization.py | 2 +- Figures/ramp_examples.py | 2 +- Figures/rheobase_correlation.py | 10 ++-------- Figures/simulation_model_comparison.pdf | Bin 46618 -> 46701 bytes Figures/simulation_model_comparison.py | 20 +++++++++++--------- Figures/plotstyle.py => plotstyle.py | 0 8 files changed, 18 insertions(+), 28 deletions(-) rename Figures/plotstyle.py => plotstyle.py (100%) diff --git a/Figures/AUC_correlation.py b/Figures/AUC_correlation.py index 611b7eb..e5a4333 100644 --- a/Figures/AUC_correlation.py +++ b/Figures/AUC_correlation.py @@ -4,20 +4,15 @@ Created on Sat Jul 3 19:52:04 2021 @author: nils """ -import seaborn as sns -import matplotlib.pyplot as plt import pandas as pd import numpy as np import string import textwrap import json import matplotlib -import matplotlib.cm as cm import matplotlib.lines as mlines from matplotlib import ticker -from matplotlib.collections import LineCollection -from matplotlib.ticker import StrMethodFormatter, NullFormatter -from plotstyle import boxplot_style +from matplotlib.ticker import NullFormatter #%% ##################### From https://stackoverflow.com/questions/52878845/swarmplot-with-hue-affecting-marker-beyond-color ## # to change marker types in seaborn swarmplot @@ -28,7 +23,6 @@ import matplotlib.pyplot as plt ############## Begin hack ############## from matplotlib.axes._axes import Axes from matplotlib.markers import MarkerStyle -from seaborn import color_palette from numpy import ndarray def GetColor2Marker(markers): @@ -444,7 +438,7 @@ plot_AUC_alt(ax1_ex,model='FS +$\mathrm{K}_{\mathrm{V}}\mathrm{1.1}$', color1='l plot_AUC_alt(ax2_ex, model='STN +$\mathrm{K}_{\mathrm{V}}\mathrm{1.1}$', color1='lightgrey', color2='k', alteration='g') #save -fig.savefig('AUC_correlation.pdf', bbox_inches='tight', dpi=fig.dpi) +fig.savefig('./Figures/AUC_correlation.pdf', bbox_inches='tight', dpi=fig.dpi) plt.show() # #%% alternative layout diff --git a/Figures/diversity_in_firing.py b/Figures/diversity_in_firing.py index 64bcb2e..ee4909c 100644 --- a/Figures/diversity_in_firing.py +++ b/Figures/diversity_in_firing.py @@ -178,7 +178,7 @@ for i in range(0,len(models)): spike_axs[i].text(-0.18, 1.08, string.ascii_uppercase[i], transform=spike_axs[i].transAxes, size=16, weight='bold') # save -fig.savefig('diversity_in_firing.pdf', bbox_inches='tight') +fig.savefig('./Figures/diversity_in_firing.pdf', bbox_inches='tight') plt.show() diff --git a/Figures/firing_characterization.py b/Figures/firing_characterization.py index 6344fd0..67fcab8 100644 --- a/Figures/firing_characterization.py +++ b/Figures/firing_characterization.py @@ -103,7 +103,7 @@ $\uparrow$ rheobase''') ax3_BR = ax3.inset_axes([0.7, 0, 0.3, 0.2]) plot_diff_sqrt(ax3_BR, b2=0.4, c2=75) ax3_BR.set_ylim(inset_ylim) -fig.savefig('firing_characterization.pdf', bbox_inches='tight') +fig.savefig('./Figures/firing_characterization.pdf', bbox_inches='tight') plt.show() diff --git a/Figures/ramp_examples.py b/Figures/ramp_examples.py index dcade0b..efe1f2a 100644 --- a/Figures/ramp_examples.py +++ b/Figures/ramp_examples.py @@ -131,5 +131,5 @@ add_scalebar(ax11_ramp, matchx=False, matchy=False, hidex=True, hidey=True, size for i in range(0,len(models)): ramp_axs[i].text(-0.05, 1.08, string.ascii_uppercase[i], transform=ramp_axs[i].transAxes, size=16, weight='bold') -fig.savefig('ramp_firing.pdf') +fig.savefig('./Figures/ramp_firing.pdf') plt.show() \ No newline at end of file diff --git a/Figures/rheobase_correlation.py b/Figures/rheobase_correlation.py index b4d3125..7d74fbe 100644 --- a/Figures/rheobase_correlation.py +++ b/Figures/rheobase_correlation.py @@ -4,20 +4,15 @@ Created on Sat Jul 3 19:52:04 2021 @author: nils """ -import seaborn as sns -import matplotlib.pyplot as plt import pandas as pd import numpy as np import string import textwrap import json import matplotlib -import matplotlib.cm as cm import matplotlib.lines as mlines from matplotlib import ticker -from matplotlib.collections import LineCollection -from matplotlib.ticker import StrMethodFormatter, NullFormatter -from plotstyle import boxplot_style +from matplotlib.ticker import NullFormatter #%% ##################### From https://stackoverflow.com/questions/52878845/swarmplot-with-hue-affecting-marker-beyond-color ## # to change marker types in seaborn swarmplot @@ -28,7 +23,6 @@ import matplotlib.pyplot as plt ############## Begin hack ############## from matplotlib.axes._axes import Axes from matplotlib.markers import MarkerStyle -from seaborn import color_palette from numpy import ndarray def GetColor2Marker(markers): @@ -413,7 +407,7 @@ plot_rheo_alt(ax1_ex,model='Cb stellate +$\mathrm{K}_{\mathrm{V}}\mathrm{1.1}$', plot_rheo_alt(ax2_ex, model='Cb stellate', color1='lightgrey', color2='k', alteration='g') # save -fig.savefig('rheobase_correlation.pdf', bbox_inches='tight') +fig.savefig('./Figures/rheobase_correlation.pdf', bbox_inches='tight') plt.show() # #%% alternative layout diff --git a/Figures/simulation_model_comparison.pdf b/Figures/simulation_model_comparison.pdf index 5c3c8f29ba21f10d139a7a3c8d583a1e85d80eb1..6369706fe832357cbd3c57e0b72c74ad8aa271c5 100644 GIT binary patch delta 11194 zcmZvBcRbZ$`+vyD$exK44I`X=$Sy0RjOGxbrRA@1bI?(f2K}1tNUl3rPv-}kkB|4$1yZMvffYL6YS&?l5wCz$ z_W4vas&=cvz5c=GNNUv&@v77Vx>O)oKy0<@8Krl5m!W@1t-K9new;bW=9N(-;^y@U z;YQNf`;R&YYnT&{InlQGjKCwNb-)ey1oX{HrX|1q$;hFdv31QN;G)pmqQbEbu@48| zEEQ+d2e?mN5H z;=ua;2cO@cP!pnhACBhiC-i-f;#%yhCtS@)lFO?i$GHu=#_L@}2G9fqRsg%culMdj zNAfD#wOv=#u{F|HbJFN-EZX;17Jj6U@;D(9^<*O4C`nO=Ww+)0<6Cp2`z<-tm$&c_ zO&WjqTYqrb)%Ob?cTcvanHAe6`ULMN@c zOoU$@VzSAWKHk5Z34R&ZW=F2NN2f<}%U$+b`xW2)9~*0N_TU_YMb-x&M=9nc2cC%O z8;9k!e+nIJy8_`hr73P9Zp~3?&&uw)Fmw#?IP8Z-thU^#DRv{Ysq6psqAKhuFqHqq z7Sh0X-gr>;LJE2SSo8;S1H*SgzQtQlLk%%N}WoP z`y0w68H>EO#<|WP&ovkieP^QoB*}7R_})&^%m>C9P*btM6%y{Rn|^7_^%vy6Ei-GOw`2KCi>ZKR;xbI#xmu@4!=n_;Q zvVX4U_S& zViEFe)8=mxR2qp) zQozsM#zptV9qgfcgkDw<=m|;a(Pw;;QW0^*CtrNpwT@@lTV;l>9-fv;H~FB5sBfw;7ov5fleit#k-82 zCpQtX5m2V~zMSpe(bZ)b4s>RQn0vzz7*h5lOX9jqiwCNij~I{lyDS|oXBiI7Lc{$( zD~-PwA8}v3=e`|`38K(Ce{ptU@TcIAMnq@rl|^IhjGj zxd30S`tyyg{&BKKJOcK{S;6aUJ1$`}%M1`;(*eU7U*TnPJs#!uo}jz%(!R+Qm_kM$ z?{msiBAMc>T*NQdJPlD4#8y9_`{yje=`*aYkb}X)!c)Zk2Kel{ z)eVn-z4AvX<+*flrg~d(8`VnW`&nm~b-&LSA=XGNs_gSLe?&U09-mXdV8fhtGx+^b0C6X=!NqGfqmeqHvkGn0m@8)%MXh+}Z$kzPaPK@MPEBg3aQ^e5f z1cO>3`)H6lFMK+X7&(p@a_-B`oshbQa%NqvirLPb+HY>frMisdQKc&}KDbJ-83 z7_EesKulQ;K?3&rH`VTHISk6^z=!~JOL3fiD-(WJ-CUWC-)4>GWRPsG2BTdrSGG_Q zhwD_gl@^(}rkXNF>?0X|jFV|IRW_zOoVlr+jlAZtE6Pl9G4u8En}`aX zjul18YEoEPpMP6ZuBOJM|46Ihx8hB-S1VK2Xi>Yl&I32r8%3C^X+e)qKO7v_Nq$ z%Wk~oUD0IsQefP1?9FW^B$2Cf0O%-E8x*46+}U1o4mnh={?{(|=8qlK@EW6yb(!E~XO zMasqnbh|{4=I$!oX~!3n3^&gCp-7pa?r5hrW2XjNdE|-}i{GK#R(cwOb|ZdH@7m(A z_!K?S&25mLIFOgARvaG}M3J$Ri5%4!6nlN^r{`yvs>H;7CXq!mj>~|xddvuXlG$8D z>OzwAq_(>Fj%r{kA;r7K(M-W)m8?ET5BXchyG*$M@hZyFk)@~#9%~GhPK$m9 z245$D^EFRrl(!J%<-ZTAjI4RrDk9Eq+DbDU4`%wP+*mVq_=2f2V7g;-f7tS|mVxQ! zkijghGplK%e9@_iLt6~^o%_)eMm6#}swJmp`3KVu(vpkmnvrv&xy@% z`Z;p6+|G_1zdZ$)!3)1bMDnGI1?F-v_%*GFf~rw7E&D|5NM_&13+5R`WU1n=rpLJBv^!eNu0e@Yll&cY=6t}E3|^ra8Q~BB5kGAYALL*X3yxa& zEJYwbt_)*<@0Gso7HAxRLGi z`rtMM&MA6i5&cds40y-05|H{eQx+~Y!>M`UuW9Ai9#NJUf$N^pbJNMO(GJNC6Fink& zLN`X*ye=FK*59FUgL)T%y2O2<((0aMH0Qs|xV7F~ zS{jb6s8T2sv!UhGw3&*e5LslgliG29KYfSsCr7HVm~h+vurf^{U6}dQ4j*>+KH>N~ zwT4s}jJ?p85hxN9)HHy#w|bPB9v0$W2eTAP@6>Kp&oOl)>H0L*s;Gyms$B;h#Xc4N zo<>!MOn5)>4vj2bi7}g9seCp7SL)#Lig9jlUGj|L(lXBY1;iQ2EJo5$SAiKibs zcDdG7=GQHr=P1%Qfjf!DlQtJ0dOo4C*<&800S?eOfj%Fu5}|CQIjU6$MWtdbq=7 znJQjCM2hNB2HF0QOqY7?4)7f~ixW2@%doJ!-ZLCkrVm`>#UQ}i3NP6`< z9NX_Tt~rZW5V~2aE$O~?ERfIiy_n%@slKHD+UbpaY@t*^$+>y+Pe;=7vcep^MS462 zXjS1CR+Wo^(;nW_i~kQuV_3=mcT}Iq4k0Mo0l?t*^Nq+zyN1V@h^}HhjNXoih_6r zePefKZ-vB+ymZ?kt5raTdXAglx3bXODw;Bt{}8Sojq*;YB`M!Z%wkleZ@60g(6ZF= zH^bGBc0q#|(7=G3mQS}ggfJYnCZShv+{>W`r5gLJm%c@X$OWCFT zx!Hq-&DIqT^NPk5Tya^MWva16g6$+L?L6PJ<;I_M#&lVC(wMY<+3uMa_DM);##KL7PkYJB4V$IIU<=!+VZY&j9bJ5KkkX(v7e znxx!~JF%&Z4Tl7V4JS~AGI}!}R^QB{(+(ur+zzWdz}JnFW$$VGa`~i*Tns4b8>O<~ zY?h-l`NTWBMq`av2Zd>RByFacGH9IdW@rfC z|F|Ig=GoJ<6Tr zV|&atKV>81WwL-FXn|t$BZi*u*Y3KHkrvTf)Ua{q1j$(5Y>YRwoEgTl(C_ibs6Faj z8W6dhLR1(-YQ{E<*=Nw81vKGT!TY*j?7cc!ZGNp1*A` zu`ck~*4Qqhl`^h&E>AneK8ea&PT#raWqj`WPg6Xz(Tkde-r;ew#)s9a4v)VoAJ`la zj27CmaisoAyQ8P?y?3Aacx^^HXVifA(6yDbx5@_?+k9R^-JxN$3AWV!=4wYC|2??dX8|!MVm9C zfjcpy8Tglb@t_fO0{>o77 z;y-c$w82Gdup=`QzS^pan$N4kjq7)e1?yVn;HNIpP zn2XHwE=>>C;33ygat?k=^rQ4rr_&na*rJE&_*gzE##7iby@9TT^t+yi3M6R~n z{`z{-UGJ1BR+r|)DWdo<4zn`5jSe?4X}QxX_U7w9q^!r1wxlS*9_hO}U-C8H$k&AK zvR1zr%Tr{@t<5kC40-p?jhbMsxsdU&?cFYrRUB@8eS-!0Ei{BEzEvuGjwE8hb0U7B zO{~tAeSrKCc|lU_i5u>pW=^6I)`^i@y|2@K^w@7~81K`Z;nKck@VihuxKeCEnazcDNP#{#-q5?SoivN%I-+%Nu*iw~ zdZ)q5&@|=}8EMy>3U5^Jaw>4IUjVoj6>~l}jfO7xXbof!?#`9&WsXD*K8$Q7$dMrO z-LSI3w>bD|?h#tqbnVdiM=`!q0U6weTVFjhzAAfz?s_W=yzIuWstnu50zN-X?%s&6 z&XzFsx?O~Co9Fe`nXx73cvPA&ahTR~th>A_72#IG+TNl6;B}5@+5n$zo-Qe%#<;b+ z8#r8_$q?jQ(Ockb9cNI!F<9SxJtO5BY4Ab8!v-qtnD19UgOtNc=v*4d>0QVn_Y$O_ zxRa;c$whS11+D!w_azb!?xRJ+TUxH=)AFcnmqYE4V2sy85&_G+{`uYqq3& zg6+h2sfXyKS3ge}ZyJNdOz;c^c~h@Xo;Prp*k#yKOh@mP)Elkx?p95(6z&MJwX9*2 z>ri|Hj#_mm)_J#zy1<9vT=6=hd9Ak+rB@L!Q~<8#3m+f|d1Xl_Q+j!=O_jzu z7&Yr`rT<#;wMz!q9KYSS`O%cl<=FC=^!V!c+{u3e(g-zKnwEplpTqzZ(0}TF{+5ns zaPVy}Mr!IcSAIo;+vWIs3GPZA+F}B&hNT_eF#hm-UfdC2$GbMbsa@)kL5qB{{$`-E zrzGu%=T&I}pCoD5 zsOnr2Yan`T1=QcF+0wsxd+oL5?)ctAYWZhlq$MM&ZlY0(wmW0vUJCEAQqP*N_dBI=JVA)We-T zDP}eBS&0mUNz8kBgyY9ZF}gi&SZ&(JjZFPBH_w00j*iH$HSBdXxv9*J(%b1|u4)g@ z>^`Zm{$Kj`EfZ47;HO)H!OX4@EwM@jS4Dnu*Eq$+OEs|1DBfn~SlsQaB6H1C_o?g> z5D2kp)+U)NyG0_|`^o98WTieyd6}sioNKY@~6R>-Q6=jWojM~TAFjZG&uxGjk zjStWj#yqe*kU%KfUJxzJ8P3iwIV^zYf=o?SQ+2<|5Pv0pZJ|q=aA!&@+2&?<`tI8= z57eZZmvw6F@*WiuN9CLH6J`L*aw`mQA3+ahohEVKer=Zv5xVu0p>b*Mthu(YYRNC) z0O+z55pRg}aD_b-9`D-w>OF@?BRN%!hm7!>X)^TgRL=Caw}%7&SGZe$3%9g@tn*IQ z3Le!$_LRz=WKh+{Qu_mcyQNsuwVI zKmL}8s+{vaKE19ED%bIcv}#bFWBZ>nUtltc4dAWlG6DEAhJ1KdilUy%CoI=}IjKIY zs%1ZhF8*y^ab^5)_PSsz1Z)UZ_T^7dvh+ExAmGk#!k1Kt32Rj@>P%@_zp-GAWKqT4 z@5f>rm;Ej#aMLxHTwYzcx^zzI(YIf>#ArW#c9hS*I9i{DYVx)Nnc!MUVP;DrSP_7e za#A<%%g5avpfjL^e^E>WN32>9tM$$;SSZA1OE$iTBiA_`8Je@Wv)TfQv32t1D41m6f=H0o9`A+C#oNSDBj9cQ`x{4RnA&8sr=+ZBAz+ryop;9yUSJW8p7HE)YaWawIC8BI|=Ia-O zIKxuapA`zWY0F-!-R{8)dG>d9akc^Q?vo1OjhWI`a~JJapbcsiEPr!3x^Odbt0y#s z3X1W0IuwRvzB6^{juzCU;`T~8ok66_f3V!3wn3ZnWa_*d#&-lWa^ywiX2>o6XV^#f z4NGN!V^^OUzIpW(o0$mz*zS~a&X+PZn(W5%Ik}R{SwPKpF6YPbniv^(-tc1na4_Zp z;qarJa`0_m;O3Sq;mVuYvJCvjR%?2T)Pdnd5=m6+Z`Un_+-G1V2a4h3Np;cll)#ks zKwWM(G3+u{DWaU|_U^CM%y#ji$3?j-4Xq+rp~vuT5}6N>juAu=#*8ZV5-Gh+TwlL5 z6*Lw2;cGw<81#hHHQ-4(KEA+@I{h`z=`H?c^490SJqJjHRgUX#nRC=Kf3R;}^LW}6 zY2M~Qup)Ixkk_KiX}?7oabx)E$bO$xWHId)rQ)>lj6$C{*g~YhlG*6S5<8QjQ{Q-D z;V~`CM+7Z%b{m400;flAJB_;T2@C5O5C=LFD90EkG9eSrYW*&ZaC!k!i+1$IjoyqGt7r zLP&c0BWNgXD`LQ6$G%zo?I8cx?U~%FXeG6Psga?3cGfq%AzM@!jjE-+>X%p1B~-pM zMWAhXk(q&!myrN{zbN1Z&PN67$;2$ekm6^p5ssLs8hR?E}bSlI;%T86!l4$33oL;UksN}Ki-{jC~ir8>nkKqJ?t#qsxgb-)-f?m^7!E+ zAKlf;tFqzAl332~wz!qOi4`dX3Ic;p7Dyxlf-%2i3 z>cJ!g$BGRkRQMnFAE>i09!*@QULs~E8e%ds#vmpehU(+Ghf%d}rP0GA8fDUB$|==! z8Cv?X8H$bf6NCX(7uHpWiz5^Lvw})93x?aBhj^6oY-DHQpkN>{n$7JR=JVqRcxWwm zZj6*09Ul6b2RFvgofr@O&65jL?7@PEPVwf#Y_>dOF>-d>_BI<+EXsfoggYaG&Gn8?ep{(y>5REk*RrD8l zIQlmpzJMm$KZfT#senBQQyil~1ZaX#xJ0Ug1dKsA4neA<0wy37{EzG*2!;5wG6SKI ze^-`|EL=b+)SoAFOIPeG!M_jokDWj$A>0G0fCWep{6}mF5`_F&*?&0}W}wlGgHIe~;uVgw0bWw;nkvHqRST+Qr2LVqzhTe^dU{-SVpFg7&< z3H=S#1tfHWgH*u9!pRIP|BJ!J%^m~+|Ml*HUH%Qx)65C?0*2O0-o#dnata$B1Y@6~ zcpeXqsY%x-z<#l0juGJ@&^!5{3otMg3V|WPaP*Y|FFYhVxc~y-2*iCrb|BJ|1sn`R zVy&N&!68_@r(_5SHlEWm*#AclfsO7TJ?sPW&t9}rA&3A1N1`1HuK^G!mal&l;ZP(P z%jPMW;8`$GArv+l|LVaYf@kc(;4mz~r}PlGjDf+x|FQr>A?`AjzdX_B| zt{DH(gMz_`(`-S61QGwsKGr`N3=u*=&TNK2&O{7BL6E1ZhM-{3(*PkTB(A^y0Ruq^ zok=@H5DJ_%C4ylx{xSpnUlBr)F!*VM zP$UF)+A$P?LY@W)MZs`Q^bZ&)wzSU5;E;dn1IIrUg2D}re>X$HXPsc}oiPX%#5MfC zdtq3JXJkm^|K=UH0SXg>1E+Hbg+tF&D-@3W7d37(To7>vGy;k^0|tQrp9T#R6#S12 z`0osW2_pX^{2v+kOzyBmpJfJx^>R956bf<%pdgm)fAp~YLj@tYa{>4HuVbhn>`aS6 z1>tAw0}J|JgE)JrvtR^;{`C9*`VfK&2?D1bV`s|g-o~n(H7F!>ChssX1aXFHFyc%) zVPL`k&IRB7Av4HY`O z8N2(89t;jYop%@vi96E&Nhb^@bY_0QPNwL|{QJMWW9`9C*8&WVJkw4vY$u-1I}8B^ zpV^B&uTHlj3<1NP>3;wMe@{Rd0);z||3!^GBhFBbguzbN2Mh^6Q>-u~5_*O$6c~OQ zv^orhRXyz(g+QK(1ck!gfc^mphazzIo_}Rn0>S7nWtVX!hP!{M+S|K;ux@c{HA_!3 g?9~DJ=Q?fdi_@% delta 11096 zcmZu$cOaGF_s^D*y~8bJCD*;zbuSrZ70KRY%O;!f8X1}CwS^GbqibarAtNL!TS6Hb z5fOfu>ihl1@BPR7oO_;gKIfdzInQ&im1W$NW!$pQIKX!(oT3VC-(6r&IObYIY) zGc}IsCEUZXXC~>z>q0(0HIkcDnPDnC&jf+5n{!JMwZ8}s4|^jTeZmic3Ep4sD;4jn zwh1LAdnCCXy_bU4{qyImB|RpZJS6wf5{GO?KBI0_>^pYZP53nT<3~(;8sN7-qF%Gv z>fCDdct9eM(et$23ywGx2JLYf00zc&z#V7-2IsD2rafC@xTu@6#bp(A4*jgOWI|A) z>DTh`Zr0%3cVJb`(X2BZXkG;t54PvH3$)t~H#Y#mjKiwE!G(z_saVrGo1Zg<{HdNh zb9GHV>+MazkJjobNrR@JKUSxV{C*C1t=3I>SP-XG)y7Qn8oi%<<^FIO#KW@zG7S8@ zfBq6oTLImB^u_OWD<7y#8$U|`{WcbGV|-O636LWGQ&GmLxAd5QF5$b0&XeqQ>6PKN!{+FTeTy9&W)`meHTqKU*$K zTheE3s3(6a=G@;ObBude5}%{60xsia0IY|`O8lylk<`IV8&P3CA_uRF@qa|*6EPU7 zXbw-saDHU8%ac6}y_pM*O?>A-rnXCKKrHGh&((9mZ~NOu)0HVxwT6ClUf4^P?w}GJ z-`ZwI?X(EG@>FS4wKh)UM2aN!>?g{q*)%T>0qyA@Osr#xp`IqIBqKh>UoW^ZkpmcA zoH5ftL&SxrtzAL0Lko6o^AJd(gl9zZJKowZydCbB(`J!uuJ+~Sp#*my;s$-DmUhIn z4qp&GyN5Ft)!(_BREfiNXL|>hT^bj3BSKlnr;MYbN7|o_JV_E74l)x}32`C<;)o)d z445F67m+{i6ydo#o-67)P1X$;^SM5uCEHCm-zU^14NdxfX_#E$2BXp~74DhaSc!gA9yu>^E480AlH4eCRg_6wWQNq*Oe0LeWGHxjcmuR+e z+}D?F zp9Q29Y0aOXNh6jE(i*;|pR8NM8<~~MEBT0=M~q)Nb7&y83~+sb+u!#R^4g25Bv&i< zIT=0$zDq}v^1-Y|LNdXaRB7um+u&(#=RKFM(^!VW#Hb=#rvQWF|Gb^RASN> z-Q-8v!Mnkxp)g_;_r>hi`{36^Oj*P)L%(fT zo#XI9dJ92ewvy8@QR3)J_g5MYd#R>g#=C47fqQYx44>=3DPktLW3E5$W>BGcg=B}> z$jYaCrI{0|hh0)}g!+Y}>$?-EVtTFq5$Ym5^_Ky=k6-&31WHC@_|LlF;dp=&wU*>Z4Y4U&Dp3>^Ct>R7gU0=LI`|x)Kut9bsBN zIgI@vezoY}uZ@j;id8oDrkxp#6yq))PAMpMo)u>w)IHCJQ;zXG{|yhP0dp7flL)tI z1vKU11Q=}~PX_0?dxJ(f(u4K`9QYzGmy@ZPU*NkehhF8GBswZrsF5Xy4e?vs7 zM>373TY8a+B%amte|H`+ZQYolRhVqZW2I%1S*2IzrL)yZVgOBO*J{l_a4i;}9*)dd z!@U&K?#2j<-VWjh2Hp#wU8=6yp>gzft!@liX;H`z$x&mOMBdU|zcWZ9#fT!VYlf*4 zf`Eg-5*rd!fOZp2a_ZCjzsfK4%GaB|T1e+<5>PN0tjkAY(^e2>nB>GX*jzk_Kk!5e z${+r9V4849D^$&nS->LyDQfh9scf^pSL?%Kj;fazVLd|MrEshMHhzU7^n+gU(A7L| zU4nBp?}jTLhbs4c-zrUW&!`aUbg3HY_y9}{2CM|QwU0&9JJ@t>4RO-rYzYt3(3?Sp zhg&559eekR-^I~%cQug@)1cghOU+21EY#x){!*>1byAbP_Rfv2oHXc4wjSzbihs(| zS!DQ-To8-5#C!Ttxn%9;)KU9GV=|(ME656OYmGbUID+qn#%;t)X>eAkyDPK`g(-l7 zJ6ZvF4lWIDH1-QG5454@f$H$?3`|XL`plF!zPW8H=IYJ2okh2poEvfJV=P||#{ zQEz*nq3R=6mh2wL%HdtfD?L3hT%RD|l)g<;zjkAAu~~_ZKzKp(&6Qhv8FR z!(r9=_p0;PbG$<*9${Yf_O4oY;6hj!aqYgwx?1IPuI0Vf??DRF{n^^UTqaMRuG~iYWKYU)ezM7HaA?UhjR8e+l!< zqnmmz33^vN4(cceNOIQ7`Z)XfrHU4xOR=?+@GA5n+;#06M;bbCb9RNQ#iQ&AO<6RY z(eWbhS%caxk+&w`+ui;Uxx%Ov3T;IsU1ZTS>4D+|QFwe-dv3Jue0I6?Yj>q=Z&`2v zPMXx+L`O4j2?K#@rNW0a-F&(XwQ11-)``zk^#!W#u4~$T0|MkF>pechY)xJk$;?ly zD^cF=dUAIDk*V^%AuH~3!Vj}ig!-=>0VB-X!4qg8Wz(*jx(Pz zcufB&(Q@aGXm*p=+uKoV!6u#j9G|59e&(JfR-t81_lAQ+1xn0$^L2LVrMYHga{&(- zvxa?Y@7Sc#jn4qXeMmT7wST!6zTo#E=??LyKLR#LTl*qKTZlvy^f+z5x)W&4cFxTZ zS(56sF4=ra!8O8|K2hLmO4OcuvcLxBSnyGxd0Lh{EtGg^8h`P_&)E837hC7Ty+u9G zVK#($D?rZw*aK!Xy@ghY?24kS6>eKkqtjB4epqUKb156J8o!QnJ#%qJmTD4_b#Wt$ zScvM{eF>BS^lIT19%8xhsy3itL$I>cAc>W}(Gva9VNwx$$g+?7r;Vw zaK2=xueB6-yAZ96{9Xc&d%)kCpzG?3)tK=M5LwY!Tj=f%E%a@*#p{Vr^oM_!UD4UI zIr=m+#Fom>aitI)Qb8_T8DHukQ}wOnzT1=1^T?8{6Rx^CWA{DqZ1 zU=-xI$U%bJJTa<_FIXMOVNZw8u(LoUz9_c&0b5&S{F%xxzWtI9J7+}8ruQi|%jDPU z#Wy}^2_D-P+4x5ccE(WocKN5t*O*MkqloT7?l3UeFQj%Yrrw5ZjB?3w3K`<%BE zmpY5|CAGG>Bk6B!u&r3)jFdB&xTCC_!OP_hAFAB&n%=WD4?2189pP}av>}7V=+|h z+DJ)g)+>48;p@Dwa~-`J0aq=zC)&5tq!zYR>Mccc)`@578sBgAKs6?=Y4eF= zUOn5{rRzBeW|IN^_{xJ}ha1 z1VcmHymey$_sMFR)+K7YUH1x(>)k#rRY~H}OwN<>j4UoG4Ig@XDX zGa2Vt5tLkI5iOO!Sl7oJCC|8>N7BHz%1dVhlAu2V)GaTr5DoQi+*1ptHm$zCjL%mp zuV9?3#vFyPxkl&UUBj0DAcyE7b-<_iaJ}7^#gqxhA!+m3d|OaqxqKW&iKfP2d|nja z^uTctd0F){h4Zpy#lu${j0=b_1MhNEK?hH#Fc=arOdS+SA|)sHu3(0jdSxMSi#P3!Mw zCP`9WoE%4#_bC12PqCgetB)S5Du}7w6&9?L&$w&JAXG-T(ckF?Y6 zL(7&*Yxi$%#ZLkQz2$z%`tjZjdE-0{IsB?kny>P8%YoSbYhPtsz112oi<3&sLwSfS zX^mGZ-Cd$<{6~r@#jf2mq@W8l)ohLr1dqa4leIPYk*Q*CkpIz$OmKOhe%Jr3Q}*V= zzqR0dkbK+vYIBYJC`MUSN8Iz7sLgB_x>(5v5Tg$Fx@35LSt~3}YHmyALbrxOHkF*X zN{?C38J0pTwBw7jLc1HJc7|-ex2icjpnn4*rojgE>|P9pZF(WdjTAIqy>W}EJlHHw zp_?n&((o@`^E52^a^4eXv)$bf&T&=5dbs)S*n^+8g}R7QI*F?Z^$|>`Ygs6i{T$n-tXX zH+G7%TQ^Ju5DI2gZNC&ut1>sdpOskx*zDZM_A4gdO6XaN?fWZmO+-q z)m{?!@zsCr1LIAK_xl(-KQVXUXCR>E;NYT@F%RK!cI%^Mxoc4-8-T;zZ^{!mfx0TV|VSa%Q`4h7C6hXi`7-Snm9MLw{La z^?O%Sw01~e?H-jLk7lC)zsT6enY0u*6H$_eHV2>j6m|H8t zj4!stv&@mUly`>|gv&Q1x7N`VyEzWgh`;*$a9)uGqX$Ist@F*hEPvW9f?4PNNJyZ% z)ZafTOIFWPcV|=N!+b_FvLyMf?FbM5C1zt7jc^J_*{f9+nud?yYqT{))3RP%AWhCU+P-z~BDduX!^vw@YvJ?@dE=T%)IcwUY;xa_;S0hLgmx~BZe|L2uR8=*f7l*AYqxV=L9dS6?z!%mprucv zch$#09S!LPgH?;w6t|?MpmTHA+G86uGQ)pXeqJnc0{BeTT8d)!`4UZWSLpH?Q>bh; z%-dfe_~H>S;;1u>n%~5EU+pdqn+$b}3Qu#qQs`JK@KEW;+pCXA%%{0a+b;RHQ8*?% zPZBfeXP-aE-#1Vz)soP!X%U_u!KZA}Ty#zS{`FG*QLXL%g)0fJfiELS5LMipe0^25 z@}eH)Pj-P`Lyf2T;+ew&_Jw=8E(~2Wzs6+=QbuXKC;F>ubD(aj85zoXSj5;ol>ADi`Bfz=1hj$%BXmad)e?>JLPQLO-?g+{%!|;`C+`< zBFPqc%+@qgA40jxFMf|@Fq*8K*|SG4Ci(IW=BSwihU`g!cpt@%4vMjUPw_|T$#N!~ zW9ySeC?Pjb{e<};0_Li?l3?$}Pq~+sR?aq%R22VSyu&UWto2E^23nPFri>i}re7?N z;1EjDr`?@UtEO6f$#B!3VPxRh07k}y$|i}1>QWdoZnnGqO9jg}K1)j%*~E500l0tc zyK{cae^s{-TJk{eOcZ;x2$W2HyLf|(wa@zb&uPbd)KR7%72rm%DUT*?bwN~ ze4}cX)iw4W@AOobUsm-%WZCLZMStgVMdyigmetM6RfszjoX)wbj2-UvB8oS=StsLq z^W6dn1N!5$lIm)BGhFTi$JGfp{q`x>wdZ$4yx7`tynpgL2rXJg!N+QO#%7>eFLiKG zR@tQGq?@s*#V29$yFU?vKnL3oBx`qon?<)n@JIW(eQ!=hWT|U2A=GbE)I$_GU>Nhv z>Zv0s5_7d&Ff;SU%3v!X#YgC!u`P*1!s?_2SXJr|L-6>9=Yq(`^M?8V+k$ z!lD-asn&~|=TZ_J@}%Q*cYoTqRJgUO>I^E zQW`jGrW50mWWo?M2kK*gx$PQdTA7$GdoAYTgZ*Y_!i3Q`akt$qskZQZcAK%q@=37q zox&hW8N*+466dJO#>a1Uc9|EsNG`6h9_76FYu)4!35{Db$Sz{FWGLqh<-^MSHe-Q-?usQ*}{r-+&E1(ak_?pti+SaN43YA<*uM~^Riab zL_*tAz|~#^3CG81j|x9nhL^vL3d+tu%4~XPje#8z$2&E~@{XPAC@OvCQX)0+4?L0P zVv_-OOSqelt^oJX;EURL#`&pamekk6$B7Hf!QIRX>eN0{Q(Knwufv91; zefV$ZscsCp=VEC4#~T5u)`X!bn&OLmsL@sAxU%7o%R(;iq`HD1;w3S zyc(Sb+p==lOX7sq2SbXAu=(uw{B*q7**7I!nUcJms%QQiLw2}E4KTh7o&6B^Vg5C3 z{NLg5G}scm)2?02K@QDR=vKaABIsrFg^`eyS?oStaKc};ydmuUE4bWF-ly(KbN};a z*l(;O0WzU7t9i~BSfQ-$!I^BFUpRZ-23V;^X3l)VlA1iY2_|PZpU}774g=yea(4z-Q@h(`*RAz zUhj6TTV;roKT5RN$)!eSu0>tA%v7#_!CjxER9^Hi7Ld5ALx@gYK+iq^l|&k=DL<(8 z%=IsE+HLH!)BwgV_cx`gJ?4rtZt~X@t(C`OZ*WW&#z1p42A^)JPu?G-GIg9(;HZz6 z(@B&|(k;MU!D#3+UTBg`@UFxC@qS}e4aa1@lBA;7)?VqsQx?nnb-P@eGD(+e2v=^e z6|e<{Hmw!e8fktFN{%L}P?pyx%kgf)^irw84>A26=Y>J zTNIIkFKqxv?cu|-7umlQd1fORUwrc$O8p+fm`}v#85yO&Boh>T$s<<;A z_qiw^=PN=+&hY2x)m?k;GpQlI^AozD1o%FHjRP#$|2P_}hYjA@=-8A!=b$q{G?p67 z-z{6$zo|XT7kWN5oCIKPJv*Obi}+PN%dTdZ_&M~RreSAp{_C{~JMQXAn#LsWFkOB_ zxBdMak2`dTo9=~l`b_dgJ+1733Mgu~eZ7(BLL>P4uZT zc(_7^ z;A_3=YMnJ>6$YEt_t@SBwiwXbNb`}ux%%@$)B7L-b$i_p?ps@I9BuoD$I$H8ir7>Uemtzi5zoNdiq-cFFGy8+C>;LHeb1k zb*Ln9W5TM-WM^65>?Njqu?#*F<-78UX!^qXg=K54SkLeM@YQg``ip+}Y*eep(qCxi zI|72|ea6Elh_7x*xZ&286rtbPdCsZO~UM4GKV z*sLk9$fZ?8B~ajH6O?S+Tk7}oc6J6tUKV-Nag6hR+FrrGGx%%o1DT|D%j&&NW$`EJ zqt%l^Mk$oinxio+;px`a1;3K@#P(wZ*_(cjO-+gaT5Fx+X5HHRc8DjrUp)o}fHdSV z2o&OIYC|G~6hVq$Hm;k%Fxze#IAE_E55~oV4hK~9;Kh`C65)Vhp1k0;4+Un;iv$O( z@#4W;ykCR^?t1fp(_WMqLSL-3$A<^xRi^;u{Tx6FKVERsuNAEF;{m$>D=-`20rmZr zLAXB;rr)0f2Q2U>1Mwe=fmZ`9z`mP2U`OB^Ff)(`tPI)%qk?$Akq0hd*#j(!U`i~C zU>>kAqzViS;Rho_t3cCGtW^g}&^t^TydK5_rrT41n_;G41NPnT;cHOqArIzmxFZfI z8O{S9L|B4D5j>d4ND~~;Jdy{bi-v(KQM{m2bPgyV&4Uq-am4{?V|X!Rk63YVpy1Eg zR&Xbl3>?3C9-Mz%3N}9G!8Cx|IAC==FFr)jkp%NOUW*VgfruQXPYohy3K4-Hy^#o- zLqrh2Wfl+-;XiNIcdc9@BFNt>OKW%RMT#L>Y5g8Jja34%JdPa^1K;%wnyXJP3ILH%)ZEO9VoK6);p4zDds&8f*gv|t6NESjP^1`g7AAxg5{8Qi!9nBV`#8ejc(D*5gmriH zKpY?>$1eyd?8wmx8C)0}$q5-k7#rtF*-=$b%Fx)b|B+!ANNo7n2aGI%;K7hEu(X5= zfFZE?JbL~M1}6Of$V5(qfuW(;O#QnTE(F7->4Xe^M6nYxVfe9M;C~&%kw@h}p@>3Y z%k-}d0Tn)-EfJxUdtp!^k&|GA&}iiU+Qa&XLWR&s*vXQ>gkbQKsTLA}9g+JVFhU{- z#L4J{L`05=`L7-ddc?OAGB|MBAPP&DQ;JB`$r=lxp+cvepoNg90HR?>efY0qG~!QY zZvMCKFeCzb(jb;4r|J$9Mjg$Ce+^jY`eY(G`Ma%+b5LwYLTK hULXvSkRWk!HF0+JbhfZ0K_Ia6g@lVsR#}eZ{{R&W&#nLf diff --git a/Figures/simulation_model_comparison.py b/Figures/simulation_model_comparison.py index e0fe9a2..7c25a8b 100644 --- a/Figures/simulation_model_comparison.py +++ b/Figures/simulation_model_comparison.py @@ -1,14 +1,9 @@ import numpy as np import matplotlib.pyplot as plt -from matplotlib.collections import LineCollection -import os -import json -import matplotlib.cm as cm import pandas as pd import os import string from plotstyle import plot_style -from adjustText import adjust_text import seaborn as sns import scipy.stats as stats import matplotlib.lines as mlines @@ -27,7 +22,13 @@ def Kendall_tau(df): def correlation_plot(ax, df='AUC', title='', cbar=False): cbar_ax = fig.add_axes([0.94, .25, .03, .4]) - + cbar_ax.spines['left'].set_visible(False) + cbar_ax.spines['bottom'].set_visible(False) + cbar_ax.spines['right'].set_visible(False) + cbar_ax.spines['top'].set_visible(False) + # cbar_ax.axis('off') + cbar_ax.set_xticks([]) + cbar_ax.set_yticks([]) if df == 'AUC': df = pd.read_csv(os.path.join('./Figures/Data/sim_mut_AUC.csv'), index_col='Unnamed: 0') elif df == 'rheo': @@ -168,8 +169,9 @@ def mutation_legend(ax, marker_s_leg, pos, ncol): E283K = mlines.Line2D([], [], color=colors[2], marker=Markers[2], markersize=marker_s_leg, linestyle='None', label='E283K') V404I = mlines.Line2D([], [], color=colors[5], marker=Markers[3], markersize=marker_s_leg, linestyle='None', label='V404I') + WT = mlines.Line2D([], [], color='k', marker='s', markersize=marker_s_leg+5, linestyle='None', label='Wild type') - ax.legend(handles=[V174F, F414C, E283K, V404I], loc='center', bbox_to_anchor=pos, ncol=ncol, frameon=False) + ax.legend(handles=[WT, V174F, F414C, E283K, V404I], loc='center', bbox_to_anchor=pos, ncol=ncol, frameon=False) @@ -207,7 +209,7 @@ ax22 = mutation_plot2(ax22, model='STN_Kv_only') marker_s_leg = 4 pos = (0.25, -0.45) -ncol = 4 +ncol = 5 mutation_legend(ax21, marker_s_leg, pos, ncol) # plot correlation matrices @@ -224,5 +226,5 @@ axr0.text(-0.38, 1.2, string.ascii_uppercase[j], transform=axr0.transAxes, size= axr1.text(-0.38, 1.2, string.ascii_uppercase[j+1], transform=axr1.transAxes, size=16, weight='bold') # save -fig.savefig('simulation_model_comparison.pdf', bbox_inches='tight') +fig.savefig('./Figures/simulation_model_comparison.pdf', bbox_inches='tight') plt.show() diff --git a/Figures/plotstyle.py b/plotstyle.py similarity index 100% rename from Figures/plotstyle.py rename to plotstyle.py