further small changes to discussion

This commit is contained in:
sonnenberg 2022-06-28 14:15:31 +02:00
parent 6afdd7843d
commit 4c7163c6c9

View File

@ -393,10 +393,11 @@ To capture the diversity in neuronal ion channel expression and its relevance in
\subsection*{Ionic Current Environments Determine the Effect of Ion Channel Mutations} \subsection*{Ionic Current Environments Determine the Effect of Ion Channel Mutations}
To our knowledge, no comprehensive evaluation of how ionic current environment and cell type affect the outcome of ion channel mutations have been reported. But comparisons between the effects of such mutations between certain cell types were described. For instance, To our knowledge, no comprehensive evaluation of how ionic current environment and cell type affect the outcome of ion channel mutations have been reported. But comparisons between the effects of such mutations between certain cell types were described. For instance, the R1628H mutation in SCN1A results in selective hyperexcitability of cortical pyramidal neurons, but causes hypoexcitability of adjacent inhibitory GABAergic neurons
the R1628H mutation in SCN1A results in selective hyperexcitability of cortical pyramidal neurons, but causes hypoexcitability of adjacent inhibitory GABAergic neurons
% mutations in the SCN1A gene encoding \(\textrm{Na}_{\textrm{V}}\textrm{1.1}\) result in epileptic phenotypes by selective hypoexcitability of inhibitory but not excitatory neurons in the cortex resulting in circuit hyperexcitability % mutations in the SCN1A gene encoding \(\textrm{Na}_{\textrm{V}}\textrm{1.1}\) result in epileptic phenotypes by selective hypoexcitability of inhibitory but not excitatory neurons in the cortex resulting in circuit hyperexcitability
\citep{Hedrich14874}. In CA3 of the hippocampus, mutation of \(\textrm{Na}_{\textrm{V}}\textrm{1.6}\) similarly results in increased excitability of pyramidal neurons and decreased excitability of parvalbumin positive interneurons \cite{makinson_scn1a_2016}. Additionally, the L858H mutation in \(\textrm{Na}_\textrm{V}\textrm{1.7}\), associated with erythermyalgia, has been shown to cause hypoexcitability in sympathetic ganglion neurons and hyperexcitability in dorsal root ganglion neurons \citep{Waxman2007, Rush2006}. The differential effects of L858H \(\textrm{Na}_\textrm{V}\textrm{1.7}\) on firing is dependent on the presence or absence of another sodium channel \(\textrm{Na}_\textrm{V}\textrm{1.8}\) \citep{Waxman2007, Rush2006}. In a modelling study, it was found that altering the sodium conductance in 2 stomatogastric ganglion neuron models from a population models decreases rheobase in both models, however the initial slope of the fI curves (proportional to AUC of the fI-curve) is increased in one model and decreased in the other suggesting that the magnitude of other currents in these models (such as \(\textrm{K}_\textrm{d}\)) determines the effect of a change in sodium current \citep{Kispersky2012}. These findings, in concert with our findings emphasize that the ionic current environment in which a channelopathy occurs is vital in determining the outcomes of the channelopathy on firing. \citep{Hedrich14874}. In CA3 of the hippocampus, the equivalent mutation in SCN8A, R1648H, increases excitability of pyramidal neurons and decreases excitability of parvalbumin positive interneurons
% mutation of \(\textrm{Na}_{\textrm{V}}\textrm{1.6}\) similarly results in increased excitability of pyramidal neurons and decreased excitability of parvalbumin positive interneurons
\cite{makinson_scn1a_2016}. Additionally, the L858H mutation in \(\textrm{Na}_\textrm{V}\textrm{1.7}\), associated with erythermyalgia, has been shown to cause hypoexcitability in sympathetic ganglion neurons and hyperexcitability in dorsal root ganglion neurons \citep{Waxman2007, Rush2006}. The differential effects of L858H \(\textrm{Na}_\textrm{V}\textrm{1.7}\) on firing is dependent on the presence or absence of another sodium channel \(\textrm{Na}_\textrm{V}\textrm{1.8}\) \citep{Waxman2007, Rush2006}. In a modelling study, it was found that altering the sodium conductance in 2 stomatogastric ganglion neuron models from a population models decreases rheobase in both models, however the initial slope of the fI curves (proportional to AUC of the fI-curve) is increased in one model and decreased in the other suggesting that the magnitude of other currents in these models (such as \(\textrm{K}_\textrm{d}\)) determines the effect of a change in sodium current \citep{Kispersky2012}. These findings, in concert with our findings emphasize that the ionic current environment in which a channelopathy occurs is vital in determining the outcomes of the channelopathy on firing.
Cell type specific differences in ionic current properties are important in the effects of ion channel mutations, however within a cell type heterogeneity in channel expression levels exists and it is often desirable to generate a population of neuronal models and to screen them for plausibility to biological data in order to capture neuronal population diversity \citep{marder_multiple_2011}. The models we used here are originally generated by characterization of current gating properties and by fitting of maximal conductances to experimental data \citep{pospischil_minimal_2008, ranjan_kinetic_2019, alexander_cerebellar_2019, otsuka_conductance-based_2004}. This practice of fixing maximal conductances based on experimental data is limiting as it does not reproduce the variability in channel expression and neuronal firing behaviour of a heterogeneous neuron population \citep{verma_computational_2020}. For example, a model derived from the mean conductances in a sub-population of stomatogastric ganglion "one-spike bursting" neurons fires 3 spikes instead of 1 per burst due to an L shaped distribution of sodium and potassium conductances \citep{golowasch_failure_2002}. Cell type specific differences in ionic current properties are important in the effects of ion channel mutations, however within a cell type heterogeneity in channel expression levels exists and it is often desirable to generate a population of neuronal models and to screen them for plausibility to biological data in order to capture neuronal population diversity \citep{marder_multiple_2011}. The models we used here are originally generated by characterization of current gating properties and by fitting of maximal conductances to experimental data \citep{pospischil_minimal_2008, ranjan_kinetic_2019, alexander_cerebellar_2019, otsuka_conductance-based_2004}. This practice of fixing maximal conductances based on experimental data is limiting as it does not reproduce the variability in channel expression and neuronal firing behaviour of a heterogeneous neuron population \citep{verma_computational_2020}. For example, a model derived from the mean conductances in a sub-population of stomatogastric ganglion "one-spike bursting" neurons fires 3 spikes instead of 1 per burst due to an L shaped distribution of sodium and potassium conductances \citep{golowasch_failure_2002}.
Multiple sets of current conductances can give rise to the same patterns of activity also termed degeneracy and differences in neuronal dynamics may only be evident with perturbations \citep{marder_multiple_2011, goaillard_ion_2021}. Multiple sets of current conductances can give rise to the same patterns of activity also termed degeneracy and differences in neuronal dynamics may only be evident with perturbations \citep{marder_multiple_2011, goaillard_ion_2021}.