More changes in introduction
This commit is contained in:
parent
339d216a67
commit
40607f3ef2
@ -297,7 +297,7 @@ To examine the role of cell-type specific ionic current environments on the impa
|
||||
\subsection*{Variety of model neurons}
|
||||
%Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-compartment, conductance-based neuronal models used here has considerable diversity as evident in the variability seen across neuronal models both in spike trains and their fI curves (\Cref{fig:diversity_in_firing}). The models chosen for this study all fire tonically and do not exhibit bursting (see methods for details and naming of the models). Some models, such as Cb stellate and RS inhibitory models, display type I firing, whereas others such as Cb stellate \(\Delta\)\Kv and STN models exhibit type II firing. Type I firing is characterized by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) whereas type II firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing at a certain frequency) \cite{ermentrout_type_1996, Rinzel_1998}. The other models used here lie on a continuum between these prototypical firing classifications. Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresholds. However, the STN +\Kv, STN \(\Delta\)\Kv, and Cb stellate \(\Delta\)\Kv models have large hysteresis (\Cref{fig:diversity_in_firing}, \Cref{fig:ramp_firing}). Different types of underlying current dynamics are known to generate these different firing types and hysteresis \cite{ERMENTROUT2002, ermentrout_type_1996, Izhikevich2006}.
|
||||
|
||||
Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-compartment, conductance-based neuronal models used here has considerable diversity as evident in the variability seen across neuronal models both in spike trains and their fI curves (\Cref{fig:diversity_in_firing}). The models chosen for this study all fire tonically and do not exhibit bursting (see methods for details and naming of the models). Models are qualitatively sorted based on their firing curves and labeled model A through L accordingly. Some models, such as models A and B, display type I firing, whereas others such as models J and L exhibit type II firing. Type I firing is characterized by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) whereas type II firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing at a certain frequency) \cite{ermentrout_type_1996, Rinzel_1998}. The other models used here lie on a continuum between these prototypical firing classifications. Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresholds. However, the models I, J, and K have large hysteresis (\Cref{fig:diversity_in_firing}, \Cref{fig:ramp_firing}). Different types of underlying current dynamics are known to generate these different firing types and hysteresis \cite{ERMENTROUT2002, ermentrout_type_1996, Izhikevich2006}.
|
||||
Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-compartment, conductance-based neuronal models used here has considerable diversity as evident in the variability seen across neuronal models both in spike trains and their fI curves (\Cref{fig:diversity_in_firing}). The models chosen for this study all fire tonically and do not exhibit bursting (see methods for details and naming of the models). Models are qualitatively sorted based on their firing curves and labeled model A through L accordingly. Some models, such as models A and B, display type I firing, whereas others such as models J and L exhibit type II firing. Type I firing is characterized by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) whereas type II firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing at a certain frequency; \citet{ermentrout_type_1996, Rinzel_1998}). The other models used here lie on a continuum between these prototypical firing classifications. Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresholds. However, the models I, J, and K have large hysteresis (\Cref{fig:diversity_in_firing,fig:ramp_firing}). Different types of underlying current dynamics are known to generate these different firing types and hysteresis \cite{ERMENTROUT2002, ermentrout_type_1996, Izhikevich2006}.
|
||||
|
||||
\subsection*{Characterization of Neuronal Firing Properties}
|
||||
\begin{figure}[tp]
|
||||
|
Loading…
Reference in New Issue
Block a user