more small changes/typos fixed
This commit is contained in:
parent
ea759e49fe
commit
2d4e8110dc
@ -318,12 +318,12 @@ Changes in firing as characterized by \(\Delta\)AUC and \(\Delta\)rheobase occup
|
||||
Neuronal firing is a complex phenomenon and a quantification of firing properties is required for comparisons across cell types and between conditions. Here we focus on two aspects of firing: rheobase, the smallest injected current at which the cell fires an action potential, and the shape of the frequency-current (fI) curve as quantified by the area under the curve (AUC) for a fixed range of input currents above rheobase (\Cref{fig:firing_characterization}A). The characterization of firing by rheobase and AUC allows to characterize both a neuron's excitability in the sub-threshold regime (rheobase) and periodic firing in the super-threshold regime (AUC) by two independent measures. Note that AUC is essentially quantifying the slope of a neuron's fI curve.
|
||||
%\notenk{This enables a AUC measurement independent from rheobase.}\notejb{I added a few words to the next sentence. Would this be enough or should we make it more explicit by an extra sentence als Nils suggests it?} \notenk{I think that this is enough - we can always expand if a reviewer asks}
|
||||
|
||||
Using these two measures we quantify the effects a changed property of an ionic current has on neural firing by the differences in both rheobase, \drheo, and in AUC, \(\Delta\)AUC, relative to the wild type neuron. \(\Delta\)AUC is in addition normalized to the AUC of the wild type neuron, see Eq.~\eqref{eqn:AUC_contrast}. Each fI curve resulting from an altered ionic current is a point in a two-dimensional coordinate system spanned by \drheo and \ndAUC (\Cref{fig:firing_characterization}B). An fI curve similar to the one of the wild type neuron is marked by a point close to the origin. In the upper left quadrant, fI curves become steeper (positive difference of AUC values: \(+\Delta\)AUC) and are shifted to lower rheobases (negative difference of rheobases: \(-\)\drheo), unambigously indicating an increased firing that clearly might be classified as a GOF of neuronal firing. The opposite happens in the bottom right quadrant where the slope of fI curves decreases (\(-\Delta\)AUC) and the rheobase is shifted to higher currents (\(+\)\drheo), indicating a decreased, LOF firing. In the lower left (\(-\Delta\)AUC and \(-\)\drheo) and upper right (\(+\Delta\)AUC and \(+\)\drheo) quadrants, the effects on firing are less clear-cut, because the changes in rheobase and AUC have opposite effects on neuronal firing. Changes in a neuron's fI curves in these two quadrants cannot uniquely be described as a gain or loss of excitability. In these cases it depends on the regime the neuron is operating in. If it is in its excitable regime and only occasionaly generates an action potential, then the effect on the rheobase matters more. If it is firing periodically with high rates, then the change in AUC might be more relevant.
|
||||
Using these two measures we quantify the effects a changed property of an ionic current has on neural firing by the differences in both rheobase, \drheo, and in AUC, \(\Delta\)AUC, relative to the wild type neuron. \(\Delta\)AUC is in addition normalized to the AUC of the wild type neuron, see Eq.~\eqref{eqn:AUC_contrast}. Each fI curve resulting from an altered ionic current is a point in a two-dimensional coordinate system spanned by \drheo and \ndAUC (\Cref{fig:firing_characterization}B). An fI curve similar to the one of the wild type neuron is marked by a point close to the origin. In the upper left quadrant, fI curves become steeper (positive difference of AUC values: \(+\Delta\)AUC) and are shifted to lower rheobases (negative difference of rheobases: \(-\)\drheo), unambigously indicating an increased firing that clearly might be classified as a GOF of neuronal firing. The opposite happens in the bottom right quadrant where the slope of fI curves decreases (\(-\Delta\)AUC) and the rheobase is shifted to higher currents (\(+\)\drheo), indicating a decreased, LOF firing. In the lower left (\(-\Delta\)AUC and \(-\)\drheo) and upper right (\(+\Delta\)AUC and \(+\)\drheo) quadrants, the effects on firing are less clear-cut, because the changes in rheobase and AUC have opposite effects on neuronal firing. Changes in a neuron's fI curves in these two quadrants cannot uniquely be described as a gain or loss of excitability. In these cases it depends on the regime the neuron is operating in. If it is in its excitable regime and only occasionally generates an action potential, then the effect on the rheobase matters more. If it is firing periodically with high rates, then the change in AUC might be more relevant.
|
||||
|
||||
\subsection*{Sensitivity Analysis}
|
||||
Sensitivity analyses are used to understand how input model parameters contribute to determining the output of a model \citep{Saltelli2002}. In other words, sensitivity analyses are used to understand how sensitive the output of a model is to a change in input or model parameters. One-factor-a-time sensitivity analyses involve altering one parameter at a time and assessing the impact of this parameter on the output. This approach enables the comparison of given alterations in parameters of ionic currents across models.
|
||||
|
||||
For example, when shifting the half activation voltage \(V_{1/2}\) of the delayed rectifier potassium current in the FS +\Kv model to more depolarized values, then the rheobase of the resulting fI curves shifts to lower currents \(-\)\drheo, making the neuron more sensitive to weak inputs, but at the same time the slope of the fI curves is reduced (\(-\)\ndAUC), reducing firing rate (\Cref{fig:AUC_correlation}~A). As a result the effect of a depolarizing shift in the delayed rectifier potassium current half activation \(V_{1/2}\) in FS neurons is in the bottom left quadrant of \Cref{fig:firing_characterization}~B and characterization as LOF or GOF in excitability is not possible. Plotting the corresponding changes in AUC against the change in half activation potential \(V_{1/2}\) results in a monotonically falling curve (thick orange line in \Cref{fig:AUC_correlation}~B). For each of the many models we get a different relation between the changes in AUC and the shifts in half maximal potential \(V_{1/2}\) (thin lines in \Cref{fig:AUC_correlation}~B). To further summarize these different dependencies of the various models we characterize each of these curves by a single number, the \( \text{Kendall} \ \tau \) correlation coefficient. A monotonically increasing curve results in a \( \text{Kendall} \ \tau \) close to \(+1\), a monotounsly decreasing curve in \( \text{Kendall} \ \tau \approx -1 \), and a non-monotonous, non-linear relation relation in \( \text{Kendall} \ \tau \) close to zero (compare lines in \Cref{fig:AUC_correlation}~B with dots in black box in panel C).
|
||||
For example, when shifting the half activation voltage \(V_{1/2}\) of the delayed rectifier potassium current in the FS +\Kv model to more depolarized values, then the rheobase of the resulting fI curves shifts to lower currents \(-\)\drheo, making the neuron more sensitive to weak inputs, but at the same time the slope of the fI curves is reduced (\(-\)\ndAUC), reducing firing rate (\Cref{fig:AUC_correlation}~A). As a result the effect of a depolarizing shift in the delayed rectifier potassium current half activation \(V_{1/2}\) in FS neurons is in the bottom left quadrant of \Cref{fig:firing_characterization}~B and characterization as LOF or GOF in excitability is not possible. Plotting the corresponding changes in AUC against the change in half activation potential \(V_{1/2}\) results in a monotonically falling curve (thick orange line in \Cref{fig:AUC_correlation}~B). For each of the many models we get a different relation between the changes in AUC and the shifts in half maximal potential \(V_{1/2}\) (thin lines in \Cref{fig:AUC_correlation}~B). To further summarize these different dependencies of the various models we characterize each of these curves by a single number, the \( \text{Kendall} \ \tau \) correlation coefficient. A monotonically increasing curve results in a \( \text{Kendall} \ \tau \) close to \(+1\), a monotounsly decreasing curve in \( \text{Kendall} \ \tau \approx -1 \), and a non-monotonous, non-linear relation in \( \text{Kendall} \ \tau \) close to zero (compare lines in \Cref{fig:AUC_correlation}~B with dots in black box in panel C).
|
||||
|
||||
Changes in gating half activation potential \(V_{1/2}\) and slope factor \(k\) as well as the maximum conductance \(g\) affect AUC (\Cref{fig:AUC_correlation}), but how exactly AUC is affected usually depends on the specific models. Increasing, for example, the slope factor of the \Kv activation curve, increases the AUC in all models (\( \text{Kendall} \ \tau \approx +1\)), but with different slopes (\Cref{fig:AUC_correlation}~D,E,F). Similar consistent positive correlations can be found for shifts in A-current activation \(V_{1/2}\). Changes in \Kv half activation \(V_{1/2}\) and in maximal A-current conductance result in negative correlations with the AUC in all models (\( \text{Kendall} \ \tau \approx -1\)).
|
||||
|
||||
@ -338,7 +338,7 @@ Qualitative differences can be found, for example, when increasing the maximal c
|
||||
\label{fig:AUC_correlation}
|
||||
\end{figure}
|
||||
|
||||
Changes in gating half activation potential \(V_{1/2}\) and slope factor \(k\) as well as the maximum conductance \(g\) affect rheobase (\Cref{fig:rheobase_correlation}), however, in contrast to AUC, qualitatively consistent effects on rheobase across models are observed. Increasing, for example, the maximal conductance of the leak current in the Cb stellate model increases the rheobase (\Cref{fig:rheobase_correlation}~G). When these changes are plotted against the change in maximal conductance a monontonically increasing relationship is evident (thick teal line in \Cref{fig:rheobase_correlation}~H). This monotonically increasing relationship is evident in all models (\( \text{Kendall} \ \tau \approx +1\)), but with different slopes (thin lines in \Cref{fig:rheobase_correlation}~H). Similarily, positive correlations are consistently found across models for maximal conductances of delayed rectifier K, \Kv, and A type currents, whereas the maximal conductance of the sodium current consistently is associated with negative correlations (\( \text{Kendall} \ \tau \approx -1\); \Cref{fig:rheobase_correlation}~I), i.e. rheobase is decreased with increasing maximum conductance in all models.
|
||||
Changes in gating half activation potential \(V_{1/2}\) and slope factor \(k\) as well as the maximum conductance \(g\) affect rheobase (\Cref{fig:rheobase_correlation}), however, in contrast to AUC, qualitatively consistent effects on rheobase across models are observed. Increasing, for example, the maximal conductance of the leak current in the Cb stellate model increases the rheobase (\Cref{fig:rheobase_correlation}~G). When these changes are plotted against the change in maximal conductance a monotonically increasing relationship is evident (thick teal line in \Cref{fig:rheobase_correlation}~H). This monotonically increasing relationship is evident in all models (\( \text{Kendall} \ \tau \approx +1\)), but with different slopes (thin lines in \Cref{fig:rheobase_correlation}~H). Similarly, positive correlations are consistently found across models for maximal conductances of delayed rectifier K, \Kv, and A type currents, whereas the maximal conductance of the sodium current consistently is associated with negative correlations (\( \text{Kendall} \ \tau \approx -1\); \Cref{fig:rheobase_correlation}~I), i.e. rheobase is decreased with increasing maximum conductance in all models.
|
||||
|
||||
Although changes in half maximal potential \(V_{1/2}\) and slope factor \(k\) generally correlate with rheobase similarly across model there are some exceptions. Changing the slope factor of Na-current inactivation, \Kv-current inactivation, and A-current activation affect rheobase both with positive and negative correlations in different models (\Cref{fig:rheobase_correlation}~F). Departures from monotonic relationships also occur in some models as a result of K-current activation \(V_{1/2}\) and slope factor \(k\), \Kv-current inactivation slope factor \(k\), and A-current activation slope factor \(k\) in some models. Thus, identical changes in current gating properties such as the half maximal potential \(V_{1/2}\) or slope factor \(k\) can have differing effects on firing depending on the model in which they occur.
|
||||
|
||||
@ -355,7 +355,7 @@ Although changes in half maximal potential \(V_{1/2}\) and slope factor \(k\) ge
|
||||
\end{figure}
|
||||
|
||||
\subsection*{\Kv Mutations}
|
||||
Mutations in \Kv are associated with episodic ataxia type~1 (EA1) and have been characterized biophysically \citep{lauxmann_therapeutic_2021}. They are used here as a case study in the effects of various ionic current environments on neuronal firing and on the outcomes of channelopathies. The changes in AUC and rheobase from wild type values for reported EA1 associated \Kv mutations are heterogenous across models containing \Kv, but generally show decreases in rheobase (\Cref{fig:simulation_model_comparision}A-I). Pairwise non-parametric Kendall \(\tau\) rank correlations between the simulated effects of these \Kv mutations on rheobase are highly correlated across models (\Cref{fig:simulation_model_comparision}J) indicating that EA1 associated \Kv mutations generally decrease rheobase across diverse cell-types. However, the effects of the \Kv mutations on AUC are more heterogenous as reflected by both weak and strong positive and negative pairwise correlations between models (\Cref{fig:simulation_model_comparision}K), suggesting that the effects of ion-channel variant on super-threshold neuronal firing depend both quantiatively and qualitatively on the specific composition of ionic currents in a given neuron.
|
||||
Mutations in \Kv are associated with episodic ataxia type~1 (EA1) and have been characterized biophysically \citep{lauxmann_therapeutic_2021}. They are used here as a case study in the effects of various ionic current environments on neuronal firing and on the outcomes of channelopathies. The changes in AUC and rheobase from wild type values for reported EA1 associated \Kv mutations are heterogenous across models containing \Kv, but generally show decreases in rheobase (\Cref{fig:simulation_model_comparision}A-I). Pairwise non-parametric Kendall \(\tau\) rank correlations between the simulated effects of these \Kv mutations on rheobase are highly correlated across models (\Cref{fig:simulation_model_comparision}J) indicating that EA1 associated \Kv mutations generally decrease rheobase across diverse cell-types. However, the effects of the \Kv mutations on AUC are more heterogenous as reflected by both weak and strong positive and negative pairwise correlations between models (\Cref{fig:simulation_model_comparision}K), suggesting that the effects of ion-channel variant on super-threshold neuronal firing depend both quantitatively and qualitatively on the specific composition of ionic currents in a given neuron.
|
||||
|
||||
\begin{figure}[tp]
|
||||
\centering
|
||||
@ -369,9 +369,9 @@ Mutations in \Kv are associated with episodic ataxia type~1 (EA1) and have been
|
||||
\section*{Discussion (3000 Words Maximum - Currently 1871)}
|
||||
% \textit{The discussion section should include a brief statement of the principal findings, a discussion of the validity of the observations, a discussion of the findings in light of other published work dealing with the same or closely related subjects, and a statement of the possible significance of the work. Extensive discussion of the literature is discouraged.}\\
|
||||
|
||||
To compare the effects of changes to properties of ionic currents on neuronal firing of different neuron types, a diverse set of conductance-based models was simulated. Changes to single ionic current properties, as well as known episodic ataxia type~1 associated \Kv mutations showed consistent effects on the rheobase across cell types, whereas the effects on AUC of the steady-state fI-curve depend on cell type. Our results demonstrate that LOF and GOF on the biophysical level cannot be uniquely transfered to the level of neuronal firing. The effects depend on the properties of the other currents expressed in a cell and are therefore depending on cell type.
|
||||
To compare the effects of changes to properties of ionic currents on neuronal firing of different neuron types, a diverse set of conductance-based models was simulated. Changes to single ionic current properties, as well as known episodic ataxia type~1 associated \Kv mutations showed consistent effects on the rheobase across cell types, whereas the effects on AUC of the steady-state fI-curve depend on cell type. Our results demonstrate that LOF and GOF on the biophysical level cannot be uniquely transferred to the level of neuronal firing. The effects depend on the properties of the other currents expressed in a cell and are therefore depending on cell type.
|
||||
|
||||
%Using a set of diverse conductance-based neuronal models, the effects of changes to properties of ionic currents on neuronal firing were determined to be heterogenous for the AUC of the steady state fI curve but more homogenous for rheobase. For a known channelopathy, episodic ataxia type~1 associated \Kv mutations, the effects on rheobase are consistent across model cell types, whereas the effects on AUC depend on cell type. Our results demonstrate that LOF and GOF on the biophysical level cannot be uniquely transfered to the level of neuronal firing. The effects depend on the properties of the other currents expressed in a cell and are therefore depending on cell type.
|
||||
%Using a set of diverse conductance-based neuronal models, the effects of changes to properties of ionic currents on neuronal firing were determined to be heterogenous for the AUC of the steady state fI curve but more homogenous for rheobase. For a known channelopathy, episodic ataxia type~1 associated \Kv mutations, the effects on rheobase are consistent across model cell types, whereas the effects on AUC depend on cell type. Our results demonstrate that LOF and GOF on the biophysical level cannot be uniquely transferred to the level of neuronal firing. The effects depend on the properties of the other currents expressed in a cell and are therefore depending on cell type.
|
||||
|
||||
\subsection*{Neuronal Diversity}
|
||||
%\notejb{Before we start questioning our models we should have a paragraph pointing out that neurons are diverse and differ in their ion channel composition. Cite for example those recent Nature/Science papers where Phillip Berens is part of on neuron types in cerebellum. Thomas Euler Retina ganglien cell types. Then the paper defining Regular/fast spiking interneurons. And many more... like Eve Marder as you have it in a paragraph further down.}\\
|
||||
@ -379,7 +379,7 @@ To compare the effects of changes to properties of ionic currents on neuronal fi
|
||||
|
||||
The nervous system consists of a vastly diverse and heterogenous collection of neurons with variable properties and characteristics including diverse combinations and expression levels of ion channels which are vital for neuronal firing dynamics.
|
||||
|
||||
Advances in high-throughput techniques have enabled large-scale investigation into single-cell properties across the CNS \citep{Poulin2016} that have revealed large diversity in neuronal gene expression, morphology and neuronal types in the motor cortex \citep{Scala2021}, neocortex \cite{Cadwell2016, Cadwell2020}, GABAergic neurons \citep{Huang2019} and interneruons \citep{Laturnus2020}, cerebellum \citep{Kozareva2021}, spinal cord \citep{Alkaslasi2021}, visual cortex \citep{Gouwens2019} as well as the retina \citep{Baden2016, Voigt2019, Berens2017, Yan2020a, Yan2020b}.
|
||||
Advances in high-throughput techniques have enabled large-scale investigation into single-cell properties across the CNS \citep{Poulin2016} that have revealed large diversity in neuronal gene expression, morphology and neuronal types in the motor cortex \citep{Scala2021}, neocortex \cite{Cadwell2016, Cadwell2020}, GABAergic neurons \citep{Huang2019} and interneurons \citep{Laturnus2020}, cerebellum \citep{Kozareva2021}, spinal cord \citep{Alkaslasi2021}, visual cortex \citep{Gouwens2019} as well as the retina \citep{Baden2016, Voigt2019, Berens2017, Yan2020a, Yan2020b}.
|
||||
|
||||
% Functional differences: reg/fat spiking, Ephys, models
|
||||
Diversity across neurons is not limited to gene expression and can also be seen electrophysiologically \citep{Tripathy2017, Gouwens2018, Tripathy2015, Scala2021, Cadwell2020, Gouwens2019, Baden2016, Berens2017} with correlations existing between gene expression and electrophysiological properties \citep{Tripathy2017}. At the ion channel level, diversity exists not only between the specific ion channels cell types express but heterogeneity also exists in ion channel expression levels within cell types \citep{marder_multiple_2011, goaillard_ion_2021,barreiro_-current_2012}. As ion channel properties and expression levels are key determinents of neuronal dynamics and firing \citep{Balachandar2018, Gu2014, Zeberg2015, Aarhem2007, Qi2013, Gu2014a, Zeberg2010, Zhou2020, Kispersky2012} neurons with different ion channel properties and expression levels display different firing properties.
|
||||
|
Loading…
Reference in New Issue
Block a user