small changes based on discussion, more to come tomorrow

This commit is contained in:
nkoch1 2022-05-21 00:26:49 -04:00
parent 6c28f34dc0
commit 041782c002

View File

@ -280,7 +280,7 @@ To examine the role of cell-type specific ionic current environments on the impa
\end{figure}
\subsection*{Variety of model neurons}
Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-compartment, conductance-based neuronal models used here has considerable diversity as evident in the variability seen across neuronal models both in spike trains and their fI curves (\Cref{fig:diversity_in_firing}). The models chosen all fire tonically and do not exhibit bursting. See methods for details and naming of the models. Some models, such as Cb stellate and RS inhibitory models, display type I firing whereas others such as Cb stellate \(\Delta\)\Kv and STN models have type II firing. Type I firing is characterized by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) generated through a saddle-node on invariant cycle bifurcation. Type II firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing at a certain frequency) due to sub-critical Hopf bifurcation \cite{ERMENTROUT2002, ermentrout_type_1996}. The other models used here lie on a continuum between these prototypical firing classifications. Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresholds, however the STN +\Kv, STN \(\Delta\)\Kv, and Cb stellate \(\Delta\)\Kv models have large hysteresis (\Cref{fig:diversity_in_firing}, \Cref{fig:ramp_firing}). This prominent hysteresis despite a continues but steep fI curve, together with the long delays of the first spike hint at a homoclinic bifurcation for the STN models \citep{Izhikevich2006} \notejb{add paper by Susanne Schreiber and Jan-Hendrik Schleimer}. \notejb{No bifurctions, but mention different dynamics!}
Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-compartment, conductance-based neuronal models used here has considerable diversity as evident in the variability seen across neuronal models both in spike trains and their fI curves (\Cref{fig:diversity_in_firing}). The models chosen all fire tonically and do not exhibit bursting. See methods for details and naming of the models. Some models, such as Cb stellate and RS inhibitory models, display type I firing whereas others such as Cb stellate \(\Delta\)\Kv and STN models have type II firing. Type I firing is characterized by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) whereas type II firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing at a certain frequency). The other models used here lie on a continuum between these prototypical firing classifications. Most neuronal models exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresholds, however the STN +\Kv, STN \(\Delta\)\Kv, and Cb stellate \(\Delta\)\Kv models have large hysteresis (\Cref{fig:diversity_in_firing}, \Cref{fig:ramp_firing}). \notejb{No bifurctions, but mention different dynamics!} \notenk{Like this?} Different underlying dynamics generate these different firing types and hysteresis \cite{ERMENTROUT2002, ermentrout_type_1996, Izhikevich2006}.
\subsection*{Characterization of Neuronal Firing Properties}
\begin{figure}[tp]
@ -295,7 +295,7 @@ Changes in firing as characterized by \(\Delta\)AUC and \(\Delta\)rheobase occup
\label{fig:firing_characterizaton}
\end{figure}
Neuronal firing is a complex phenomenon and a quantification of firing properties is required for comparisons across cell types and between conditions. Here we focus on two aspects of firing: rheobase, the smallest injected current at which the cell fires an action potential, and the shape of the frequency-current (fI) curve as quantified by the area under the curve (AUC) for a fixed range of input currents above rheobase (\Cref{fig:firing_characterizaton}A). \notejb{this way we make the AUC independent from changes in rheobase} The characterization of firing by rheobase and AUC allows to characterize both a neuron's excitability in the sub-threshold regime (rheobase) and periodic firing in the super-threshold regime (AUC). Note that AUC is essentially quantifying the slope of a neuron's fI curve.
Neuronal firing is a complex phenomenon and a quantification of firing properties is required for comparisons across cell types and between conditions. Here we focus on two aspects of firing: rheobase, the smallest injected current at which the cell fires an action potential, and the shape of the frequency-current (fI) curve as quantified by the area under the curve (AUC) for a fixed range of input currents above rheobase (\Cref{fig:firing_characterizaton}A). \notejb{this way we make the AUC independent from changes in rheobase} \notenk{How about ``This enables a AUC measurement independent from rheobase.''}The characterization of firing by rheobase and AUC allows to characterize both a neuron's excitability in the sub-threshold regime (rheobase) and periodic firing in the super-threshold regime (AUC). Note that AUC is essentially quantifying the slope of a neuron's fI curve.
Using these two measures we quantify the effects a changed property of an ionic current has on neural firing by the differences in both rheobase, $\Delta$rheobase, and in AUC, $\Delta$AUC, relative to the wild type neuron. $\Delta$AUC is in addition normalized to the AUC if the wild type neuron, see Eq.~\eqref{eqn:AUC_contrast}. Each fI curve resulting from an altered ionic current is a point in a two-dimensional coordinate system spanned by $\Delta$rheobase and \notejb{normalized $\Delta$AUC} (\Cref{fig:firing_characterizaton}B). An fI curve similar to the one of the wild type neuron is marked by a point close to the origin. In the upper left quadrant, fI curves become steeper (positive difference of AUC values: \(+\Delta\)AUC) and are shifted to lower rheobases (negative difference of rheobases: \(-\Delta\)rheobase), unambigously indicating an increased firing that clearly might be classified as a GOF of neuronal firing. The opposite happens in the bottom right quadrant where the slope of fI curves decreases (\(-\Delta\)AUC) and the rheobase is shifted to higher currents (\(+\Delta\)rheobase), indicating a decreased, LOF firing. In the lower left (\(-\Delta\)AUC and \(-\Delta\)rheobase) and upper right (\(+\Delta\)AUC and \(+\Delta\)rheobase) quadrants, the effects on firing are less clear-cut, because the changes in rheobase and AUC have opposite effects on neuronal firing. Changes in a neuron's fI curves in these two quadrants cannot uniquely be described as a gain or loss of excitability. In these cases it depends on the regime the neuron is operating in. If it is in its excitable regime and only occasionaly generates an action potential, then the effect on the rheobase matters more. If it is firing periodically with high rates, then the change in AUC might be more relevant.