gpgrewe2024/code/GP_Code.py

193 lines
5.8 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Oct 17 09:23:10 2024
@author: diana
"""
# -*- coding: utf-8 -*-
import glob
import os
import rlxnix as rlx
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as sig
from scipy.integrate import quad
### FUNCTIONS ###
def binary_spikes(spike_times, duration, dt):
""" Converts the spike times to a binary representation.
Zeros when there is no spike, One when there is.
Parameters
----------
spike_times : np.array
The spike times.
duration : float
The trial duration.
dt : float
the temporal resolution.
Returns
-------
binary : np.array
The binary representation of the spike times.
"""
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
binary[spike_indices] = 1
return binary
def firing_rate(binary_spikes, box_width, dt=0.000025):
"""Calculate the firing rate from binary spike data.
This function computes the firing rate using a boxcar (moving average)
filter of a specified width.
Parameters
----------
binary_spikes : np.array
A binary array representing spike occurrences.
box_width : float
The width of the box filter in seconds.
dt : float, optional
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
Returns
-------
rate : np.array
An array representing the firing rate at each time step.
"""
box = np.ones(int(box_width // dt))
box /= np.sum(box) * dt #Normalization of box kernel to an integral of 1
rate = np.convolve(binary_spikes, box, mode="same")
return rate
def powerspectrum(rate, dt):
"""Compute the power spectrum of a given firing rate.
This function calculates the power spectrum using the Welch method.
Parameters
----------
rate : np.array
An array of firing rates.
dt : float
The temporal resolution (time step) in seconds.
Returns
-------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
"""
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
return frequency, power
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
points_categories = {}
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
points = [p for harmonics in points_categories.values() for p in harmonics]
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
return points, color_mapping, points_categories
def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories):
"""Create a figure of the power spectrum with integrals highlighted around specified points.
This function creates a plot of the power spectrum and shades areas around
specified harmonic points to indicate the calculated integrals.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
points : list
A list of harmonic frequencies to highlight.
delta : float
Half-width of the range for integration around each point.
color_mapping : dict
A mapping of point categories to colors.
points_categories : dict
A mapping of categories to lists of points.
Returns
-------
fig : matplotlib.figure.Figure
The created figure object.
"""
fig, ax = plt.subplots()
ax.plot(frequency, power)
integrals = []
for point in points:
indices = (frequency >= point - delta) & (frequency <= point + delta)
integral = np.trapz(power[indices], frequency[indices])
integrals.append(integral)
# Get color based on point category
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
ax.set_xlim([0, 1200])
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel('Power')
ax.set_title('Power Spectrum with marked Integrals')
ax.legend()
return fig
### Data retrieval ###
datafolder = "../data" # Geht in der Hierarchie einen Ordern nach oben (..) und dann in den Ordner 'data'
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
dataset = rlx.Dataset(example_file)
sams = dataset.repro_runs("SAM")
sam = sams[2]
## Daten für Funktionen
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
stim = sam.stimuli[1]
potential, time = stim.trace_data("V-1")
spikes, _ = stim.trace_data("Spikes-1")
duration = stim.duration
dt = stim.trace_info("V-1").sampling_interval
### Anwendung Functionen ###
b = binary_spikes(spikes, duration, dt)
rate = firing_rate(b, box_width=0.05, dt=dt)
frequency, power = powerspectrum(b, dt)
## Important stuff
eodf = stim.metadata[stim.name]["EODf"][0][0]
stimulus_frequency = eodf + df
AM = 50 # Hz
#print(f"EODf: {eodf}, Stimulus Frequency: {stimulus_frequency}, AM: {AM}")
frequencies = [AM, eodf, stimulus_frequency]
categories = ["AM", "EODf", "Stimulus frequency"]
num_harmonics = [4, 2, 2]
colors = ["green", "orange", "red"]
delta = 2.5
### Peaks im Powerspektrum finden ###
points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
fig = plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories)
plt.show()