173 lines
4.7 KiB
Python
173 lines
4.7 KiB
Python
import glob
|
|
import pathlib
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import rlxnix as rlx
|
|
from IPython import embed
|
|
from scipy.signal import welch
|
|
|
|
def AM(EODf, stimulus):
|
|
"""
|
|
Calculates the Amplitude Modulation and Nyquist frequency
|
|
|
|
Parameters
|
|
----------
|
|
EODf : float or int
|
|
The current EODf.
|
|
stimulus : float or int
|
|
The absolute frequency of the stimulus.
|
|
|
|
Returns
|
|
-------
|
|
AM : float
|
|
The amplitude modulation resulting from the stimulus.
|
|
nyquist : float
|
|
The maximum frequency possible to resolve with the EODf.
|
|
|
|
"""
|
|
nyquist = EODf * 0.5
|
|
AM = np.mod(stimulus, nyquist)
|
|
return AM, nyquist
|
|
|
|
def binary_spikes(spike_times, duration, dt):
|
|
"""
|
|
Converts the spike times to a binary representations
|
|
|
|
Parameters
|
|
----------
|
|
spike_times : np.array
|
|
The spike times.
|
|
duration : float
|
|
The trial duration:
|
|
dt : float
|
|
The temporal resolution.
|
|
|
|
Returns
|
|
-------
|
|
binary : np.array
|
|
The binary representation of the spike train.
|
|
|
|
"""
|
|
binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
|
|
|
|
spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
|
|
binary[spike_indices] = 1 # put the indices into binary
|
|
return binary
|
|
|
|
def extract_stim_data(stimulus):
|
|
'''
|
|
extracts all necessary metadata for each stimulus
|
|
|
|
Parameters
|
|
----------
|
|
stimulus : Stimulus object or rlxnix.base.repro module
|
|
The stimulus from which the data is needed.
|
|
|
|
Returns
|
|
-------
|
|
amplitude : float
|
|
The relative signal amplitude in percent.
|
|
df : float
|
|
Distance of the stimulus to the current EODf.
|
|
eodf : float
|
|
Current EODf.
|
|
stim_freq : float
|
|
The total stimulus frequency (EODF+df).
|
|
amp_mod : float
|
|
The current amplitude modulation.
|
|
ny_freq : float
|
|
The current nyquist frequency.
|
|
|
|
'''
|
|
# extract metadata
|
|
# the stim.name adjusts the first key as it changes with every stimulus
|
|
amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0]
|
|
df = stimulus.metadata[stimulus.name]['DeltaF'][0][0]
|
|
eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0])
|
|
stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0])
|
|
# calculates the amplitude modulation
|
|
amp_mod, ny_freq = AM(eodf, stim_freq)
|
|
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
|
|
|
|
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
|
|
'''
|
|
Calculates the firing rate from binary spikes
|
|
|
|
Parameters
|
|
----------
|
|
binary_spikes : np.array
|
|
The binary representation of the spike train.
|
|
dt : float, optional
|
|
Time difference between two datapoints. The default is 0.000025.
|
|
box_width : float, optional
|
|
Time window on which the rate should be computed on. The default is 0.01.
|
|
|
|
Returns
|
|
-------
|
|
rate : np.array
|
|
Array of firing rates.
|
|
|
|
'''
|
|
box = np.ones(int(box_width // dt))
|
|
box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
|
|
rate = np.convolve(binary_spikes, box, mode = 'same')
|
|
return rate
|
|
|
|
def power_spectrum(spike_times, duration, dt):
|
|
'''
|
|
Computes a power spectrum based on the spike times
|
|
|
|
Parameters
|
|
----------
|
|
spike_times : np.array
|
|
The spike times.
|
|
duration : float
|
|
The trial duration:
|
|
dt : float
|
|
The temporal resolution.
|
|
|
|
Returns
|
|
-------
|
|
freq : np.array
|
|
All the frequencies of the power spectrum.
|
|
power : np.array
|
|
Power of the frequencies calculated.
|
|
|
|
'''
|
|
# binarizes spikes
|
|
binary = binary_spikes(spike_times, duration, dt)
|
|
# computes firing rates
|
|
rate = firing_rate(binary, dt = dt)
|
|
# creates power spectrum
|
|
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
|
return freq, power
|
|
|
|
def remove_poor(files):
|
|
"""
|
|
Removes poor datasets from the set of files for analysis
|
|
|
|
Parameters
|
|
----------
|
|
files : list
|
|
list of files.
|
|
|
|
Returns
|
|
-------
|
|
good_files : list
|
|
list of files without the ones with the label poor.
|
|
|
|
"""
|
|
# create list for good files
|
|
good_files = []
|
|
# loop over files
|
|
for i in range(len(files)):
|
|
# print(files[i])
|
|
# load the file (takes some time)
|
|
data = rlx.Dataset(files[i])
|
|
# get the quality
|
|
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
|
|
# check the quality
|
|
if quality != "poor":
|
|
# if its good or fair add it to the good files
|
|
good_files.append(files[i])
|
|
return good_files |