194 lines
8.7 KiB
Python
194 lines
8.7 KiB
Python
import glob
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
import rlxnix as rlx
|
|
import useful_functions as f
|
|
from matplotlib.lines import Line2D
|
|
from tqdm import tqdm
|
|
|
|
# plot the tuning curves for all cells y/n
|
|
single_plots = True
|
|
|
|
# all files we want to use
|
|
files = glob.glob("../data/2024-10-*.nix")
|
|
|
|
#EODf file for either day
|
|
eodf_file_w = glob.glob('../data/EOD_only/*-16*.nix')[0]
|
|
eodf_file_m = glob.glob('../data/EOD_only/*-21*.nix')[0]
|
|
|
|
# get only the good and fair filepaths
|
|
new_files = f.remove_poor(files)
|
|
|
|
#get the filenames as labels for plotting
|
|
labels = [os.path.splitext(os.path.basename(file))[0] for file in new_files]
|
|
|
|
# dict for all the different contrasts
|
|
contrast_files = {20 : {'power' :[], 'freq' : []},
|
|
10 : {'power' :[], 'freq' : []},
|
|
5 : {'power' :[], 'freq' : []}}
|
|
norm_contrast_files = {20 : {'power' :[], 'freq' : []},
|
|
10 : {'power' :[], 'freq' : []},
|
|
5 : {'power' :[], 'freq' : []}}
|
|
|
|
# loop over all the good files
|
|
for u, file in tqdm(enumerate(new_files), total = len(new_files)):
|
|
#use correct eodf file
|
|
if "-16" in file:
|
|
orig_eodf = f.true_eodf(eodf_file_w)
|
|
else:
|
|
orig_eodf = f.true_eodf(eodf_file_m)
|
|
|
|
#define lists
|
|
contrast_frequencies = []
|
|
contrast_powers = []
|
|
# load a file
|
|
dataset = rlx.Dataset(file)
|
|
# extract sams
|
|
sams = dataset.repro_runs('SAM')
|
|
# get arrays for frequnecies and power
|
|
stim_frequencies = np.zeros(len(sams))
|
|
peak_powers = np.zeros_like(stim_frequencies)
|
|
contrast_sams = f.contrast_sorting(sams)
|
|
|
|
eodfs = []
|
|
# loop over the contrasts
|
|
for key in contrast_sams:
|
|
stim_frequencies = np.zeros(len(contrast_sams[key]))
|
|
norm_stim_frequencies = np.zeros_like(stim_frequencies)
|
|
peak_powers = np.zeros_like(stim_frequencies)
|
|
|
|
for i, sam in enumerate(contrast_sams[key]):
|
|
# get stimulus frequency and stimuli
|
|
_, _, _, _, eodf, _, stim_frequency = f.sam_data(sam)
|
|
sam_frequency, sam_power = f.sam_spectrum(sam)
|
|
# detect peaks
|
|
_, _, peak_powers[i] = f.calculate_integral(sam_frequency,
|
|
sam_power, stim_frequency)
|
|
|
|
# add the current stimulus frequency
|
|
stim_frequencies[i] = stim_frequency
|
|
norm_stim_frequencies[i] = stim_frequency - orig_eodf
|
|
eodfs.append(eodf)
|
|
# replae zeros with NaN
|
|
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
|
|
contrast_frequencies.append(stim_frequencies)
|
|
contrast_powers.append(peak_powers)
|
|
if key == 20:
|
|
contrast_files[20]['freq'].append(stim_frequencies)
|
|
contrast_files[20]['power'].append(peak_powers)
|
|
norm_contrast_files[20]['freq'].append(norm_stim_frequencies)
|
|
norm_contrast_files[20]['power'].append(peak_powers)
|
|
elif key == 10:
|
|
contrast_files[10]['freq'].append(stim_frequencies)
|
|
contrast_files[10]['power'].append(peak_powers)
|
|
norm_contrast_files[10]['freq'].append(norm_stim_frequencies)
|
|
norm_contrast_files[10]['power'].append(peak_powers)
|
|
else:
|
|
contrast_files[5]['freq'].append(stim_frequencies)
|
|
contrast_files[5]['power'].append(peak_powers)
|
|
norm_contrast_files[5]['freq'].append(norm_stim_frequencies)
|
|
norm_contrast_files[5]['power'].append(peak_powers)
|
|
|
|
curr_eodf = np.mean(eodfs)
|
|
if single_plots == True:
|
|
# one cell with all contrasts in one subplot
|
|
fig, ax = plt.subplots()
|
|
ax.plot(contrast_frequencies[0], contrast_powers[0])
|
|
ax.plot(contrast_frequencies[1], contrast_powers[1])
|
|
if contrast_frequencies and contrast_frequencies[-1].size == 0:
|
|
if contrast_frequencies and contrast_frequencies[-2].size == 0:
|
|
ax.set_xlim(0,2000)
|
|
else:
|
|
ax.set_xlim(0,np.max(contrast_frequencies[-2]))
|
|
else:
|
|
ax.plot(contrast_frequencies[2], contrast_powers[2])
|
|
ax.set_xlim(0,np.max(contrast_frequencies[-1]))
|
|
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed', alpha = 0.8)
|
|
ax.axvline(2*curr_eodf, color = 'black', linestyle = 'dotted', alpha = 0.8)
|
|
ax.set_ylim(0, 0.00014)
|
|
ax.set_xlabel('stimulus frequency [Hz]')
|
|
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
|
|
ax.set_title(f"{file}")
|
|
fig.legend(labels = ['20 % contrast', '10 % contrast','5 % contrast','EODf of awake fish', '1st harmonic of current EODf' ], loc = 'lower center', ncol = 3)
|
|
plt.tight_layout(rect=[0, 0.06, 1, 1])
|
|
plt.savefig(f'../results/tuning_curve{labels[u]}.svg')
|
|
|
|
#one cell with the contrasts in different subplots
|
|
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
|
for p, key in enumerate(contrast_files):
|
|
ax = axs[p]
|
|
ax.plot(contrast_files[key]['freq'][-1],contrast_files[key]['power'][-1])
|
|
ax.set_title(f"{key}")
|
|
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed')
|
|
ax.axvline(2*curr_eodf, color = 'darkblue', linestyle = 'dotted', alpha = 0.8)
|
|
if p == 0:
|
|
ax.set_ylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
|
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
|
fig.suptitle(f'{labels[u]}')
|
|
fig.legend(labels = ['power of stimulus peak', 'EODf of awake fish','1st harmonic of current EODf'], loc = 'lower center', bbox_to_anchor=(0.5, 0.05), ncol = 3)
|
|
plt.tight_layout(rect=[0, 0.06, 1, 1])
|
|
plt.savefig(f'../results/contrast_tuning{labels[u]}.svg')
|
|
|
|
cmap = plt.get_cmap('viridis')
|
|
colors = cmap(np.linspace(0, 1, len(new_files)))
|
|
plt.close('all')
|
|
if len(new_files) < 10:
|
|
lines = []
|
|
labels_legend = []
|
|
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
|
for p, key in enumerate(contrast_files):
|
|
ax = axs[p]
|
|
for i in range(len(contrast_files[key]['power'])):
|
|
line, = ax.plot(contrast_files[key]['freq'][i],contrast_files[key]['power'][i], label = labels[i], color = colors[i])
|
|
ax.set_title(f"{key}")
|
|
ax.axvline(orig_eodf, color = 'black',linestyle = 'dashed')
|
|
if p == 0:
|
|
lines.append(line)
|
|
labels_legend.append(labels[i])
|
|
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
|
fig.supylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
|
|
|
# Create a single legend beneath the plots with 3 columns
|
|
lines.append(Line2D([0], [0], color='black', linestyle='--')) # Custom line for the legend
|
|
labels_legend.append("Awake fish EODf") # Custom label
|
|
fig.legend(lines, labels_legend, loc='upper center', ncol=3, fontsize=10)
|
|
plt.tight_layout(rect=[0, 0, 1, 0.85]) # Adjust layout to make space for the legend
|
|
if "-16" in new_files[-1]:
|
|
plt.savefig('../results/tuning_curves_10_16.svg')
|
|
elif "-21" in new_files[0]:
|
|
plt.savefig('../results/tuning_curves_10_21.svg')
|
|
else:
|
|
for o in range(2):
|
|
lines = []
|
|
labels_legend = []
|
|
fig, axs = plt.subplots(1, 3, figsize = [10,6], sharex = True, sharey = True)
|
|
for p, key in enumerate(norm_contrast_files):
|
|
ax = axs[p]
|
|
for i in range(len(norm_contrast_files[key]['power'])):
|
|
line, = ax.plot(norm_contrast_files[key]['freq'][i],norm_contrast_files[key]['power'][i], label = labels[i], color = colors[i])
|
|
ax.set_title(f"{key}")
|
|
ax.axvline(0, color = 'black',linestyle = 'dashed')
|
|
if p == 0:
|
|
lines.append(line)
|
|
labels_legend.append(labels[i])
|
|
fig.supylabel(r'power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]', fontsize=12)
|
|
|
|
# Create a single legend beneath the plots with 3 columns
|
|
lines.append(Line2D([0], [0], color='black', linestyle='--')) # Custom line for the legend
|
|
labels_legend.append("Awake fish EODf") # Custom label
|
|
fig.legend(lines, labels_legend, loc='upper center', ncol=3, fontsize=10)
|
|
plt.tight_layout(rect=[0, 0, 1, 0.82]) # Adjust layout to make space for the legend
|
|
if o == 0:
|
|
ax.set_xlim(-600, 2100)
|
|
fig.supxlabel('stimulus frequency [Hz]', fontsize=12)
|
|
plt.savefig('../results/tuning_curves_norm.svg')
|
|
else:
|
|
ax.set_xlim(-600, 600)
|
|
fig.supxlabel(' relative stimulus frequency [Hz]', fontsize=12)
|
|
plt.savefig('../results/tuning_curves_norm_zoom.svg')
|
|
#plt.close('all')
|
|
|
|
|
|
|
|
|