import matplotlib.pyplot as plt import numpy as np import os import glob import rlxnix as rlx from useful_functions import sam_data, sam_spectrum, calculate_integral, contrast_sorting, remove_poor from tqdm import tqdm # Import tqdm for the progress bar def load_files(file_path_pattern): """Load all files matching the pattern and remove poor quality files.""" all_files = glob.glob(file_path_pattern) good_files = remove_poor(all_files) return good_files def process_sam_data(sam): """Process data for a single SAM and return necessary frequencies and powers.""" _, _, _, _, eodf, nyquist, stim_freq = sam_data(sam) # Skip if stim_freq is NaN if np.isnan(stim_freq): return None # Get power spectrum and frequency index for 1/2 EODf freq, power = sam_spectrum(sam) nyquist_idx = np.searchsorted(freq, nyquist) # Get frequencies and powers before 1/2 EODf freqs_before_half_eodf = freq[:nyquist_idx] powers_before_half_eodf = power[:nyquist_idx] # Get peak frequency and power am_peak_f = freqs_before_half_eodf[np.argmax(powers_before_half_eodf)] _, _, peak_power = calculate_integral(freq, power, am_peak_f) return stim_freq, am_peak_f, peak_power def plot_contrast_data(contrast_dict, file_tag, axs1, axs2): """Loop over all contrasts and plot AM Frequency and AM Power.""" for idx, contrast in enumerate(contrast_dict): # contrasts = keys of dict ax1 = axs1[idx] # First figure (AM Frequency vs Stimulus Frequency) ax2 = axs2[idx] # Second figure (AM Power vs Stimulus Frequency) contrast_sams = contrast_dict[contrast] # store all stim_freq and peak_power/nyquist_freq for this contrast stim_freqs = [] am_freqs = [] peak_powers = [] # loop over all sams of one contrast for sam in contrast_sams: processed_data = process_sam_data(sam) if processed_data is None: continue stim_freq, am_peak_f, peak_power = processed_data stim_freqs.append(stim_freq) am_freqs.append(am_peak_f) peak_powers.append(peak_power) # Plot in the first figure (AM Frequency vs Stimulus Frequency) ax1.plot(stim_freqs, am_freqs, '-', label=file_tag) ax1.set_title(f'Contrast {contrast}%') ax1.grid(True) ax1.legend(loc='upper right') # Plot in the second figure (AM Power vs Stimulus Frequency) ax2.plot(stim_freqs, peak_powers, '-', label=file_tag) ax2.set_title(f'Contrast {contrast}%') ax2.grid(True) ax2.legend(loc='upper right') def process_file(file, axs1, axs2): """Process a single file: extract SAMs and plot data for each contrast.""" dataset = rlx.Dataset(file) sam_list = dataset.repro_runs('SAM') # Extract the file tag (first part of the filename) for the legend file_tag = '-'.join(os.path.basename(file).split('-')[0:4]) # Sort SAMs by contrast contrast_dict = contrast_sorting(sam_list) # Plot the data for each contrast plot_contrast_data(contrast_dict, file_tag, axs1, axs2) def loop_over_files(files, axs1, axs2): """Loop over all good files, process each file, and plot the data.""" for file in tqdm(files, desc="Processing files"): process_file(file, axs1, axs2) def main(): # Load files file_path_pattern = '../data/16-10-24/*.nix' good_files = load_files(file_path_pattern) # Initialize figures fig1, axs1 = plt.subplots(3, 1, constrained_layout=True, sharex=True) # For AM Frequency vs Stimulus Frequency fig2, axs2 = plt.subplots(3, 1, constrained_layout=True, sharex=True) # For AM Power vs Stimulus Frequency # Loop over files and process data loop_over_files(good_files, axs1, axs2) # Add labels to figures fig1.supxlabel('Stimulus Frequency (df + EODf) [Hz]') fig1.supylabel('AM Frequency [Hz]') fig2.supxlabel('Stimulus Frequency (df + EODf) [Hz]') fig2.supylabel('AM Power') # Show plots plt.show() # Run the main function if __name__ == '__main__': main() ''' Function that gets eodf and 1/2 eodf per contrast: def calculate_mean_eodf(sams): """ Calculate mean EODf and mean 1/2 EODf for the given SAM data. Args: sams (list): List of SAM objects. Returns: mean_eodf (float): Mean EODf across all SAMs. mean_half_eodf (float): Mean 1/2 EODf (Nyquist frequency) across all SAMs. """ eodfs = [] nyquists = [] for sam in sams: _, _, _, _, eodf, nyquist, _ = sam_data(sam) # Add to list only if valid if not np.isnan(eodf): eodfs.append(eodf) nyquists.append(nyquist) # Calculate mean EODf and 1/2 EODf mean_eodf = np.mean(eodfs) mean_half_eodf = np.mean(nyquists) return mean_eodf, mean_half_eodf ''' # TODO: # display eodf values in plot for one cell, one intensity - integrate function for this # lowpass with gaussian kernel for amplitude plot(0.5 sigma in frequency spectrum (dont filter too narrowly)) # fix legends (only for the cells that are being displayed) # save figures # plot remaining 3 plots, make 1 function for every option and put that in main code # push files to git