'''This script contains all functions for various plots that could be relevant for the presentation or protocol of the Grewe GP 2024''' import os import matplotlib.pyplot as plt import numpy as np import rlxnix as rlx from useful_functions import power_spectrum import sys '''IMPORT DATA''' datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix') '''EXTRACT DATA''' dataset = rlx.Dataset(example_file) # get sams sams = dataset.repro_runs('SAM') sam = sams[2] # get stims stimulus = sam.stimuli[-1] stim_count = sam.stimulus_count '''PLOTS''' # create colormap colors = plt.cm.prism(np.linspace(0, 1, stim_count)) # plot timeline of whole rec dataset.plot_timeline() # plot voltage over time for whole trace def plot_vt_spikes(t, v, spike_t): fig = plt.figure(figsize=(5, 2.5)) # alternative to ax = axs[0] ax = fig.add_subplot() # plot vt diagram ax.plot(t[t<0.1], v[t<0.1]) # plot spikes into vt diagram, at max V ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v)) plt.show() # plot scatter plot for one sam with all 3 stims def scatter_plot(colormap, stimuli_list, stimulus_count): fig = plt.figure() ax = fig.add_subplot() ax.eventplot(stimuli_list, colors=colormap) ax.set_xlabel('Spike Times [ms]') ax.set_ylabel('Loop #') ax.set_yticks(range(stimulus_count)) ax.set_title('Spikes of SAM 3') plt.show() # calculate power spectrum freq, power = power_spectrum(stimulus) # plot power spectrum def power_spectrum_plot(f, p): # plot power spectrum fig = plt.figure() ax = fig.add_subplot() ax.plot(freq, power) ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [1/Hz]') ax.set_xlim(0, 1000) plt.show() # DIANAS POWER SPECTRUM PLOT functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Projekt\gpgrewe2024\code" sys.path.append(functions_path) import useful_functions as u import matplotlib.ticker as ticker def float_formatter(x, _): """Format the y-axis values as floats with a specified precision.""" return f'{x:.5f}' def plot_highlighted_integrals(ax, frequency, power, points, color_mapping, points_categories, delta=2.5): """ Highlight integrals on the existing axes of the power spectrum. Parameters ---------- ax : matplotlib.axes.Axes The axes on which to plot the highlighted integrals. frequency : np.array An array of frequencies corresponding to the power values. power : np.array An array of power spectral density values. points : list A list of harmonic frequencies to check and highlight. delta : float Half-width of the range for integration around each point. color_mapping : dict A dictionary mapping each category to its color. points_categories : dict A mapping of categories to lists of points. Returns ------- None """ ax.plot(frequency, power) # Plot power spectrum on the existing axes for point in points: # Calculate the integral and local mean integral, local_mean = u.calculate_integral_2(frequency, power, point) # Check if the point is valid valid = u.valid_integrals(integral, local_mean, point) if valid: # Define color based on the category of the point point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown") color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray') # Shade the region around the point where the integral was calculated ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point_category}') # Print out point, category, and color #ax.text(f"{point_category}: Integral: {integral:.5e}, Color: {color}") ax.set_xlim([0, 1200]) ax.set_ylim([0, 6e-5]) ax.set_xlabel('Frequency (Hz)') ax.set_ylabel('Power') ax.set_title('Power Spectrum with Highlighted Integrals') # Apply float formatting to the y-axis ax.yaxis.set_major_formatter(ticker.FuncFormatter(float_formatter))