import glob import pathlib import numpy as np import matplotlib.pyplot as plt import rlxnix as rlx from IPython import embed from scipy.signal import welch def binary_spikes(spike_times, duration, dt): """ Converts the spike times to a binary representations Parameters ---------- spike_times : np.array The spike times. duration : float The trial duration: dt : float The temporal resolution. Returns ------- binary : np.array The binary representation of the spike train. """ binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices binary[spike_indices] = 1 # put the indices into binary return binary def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01): box = np.ones(int(box_width // dt)) box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one rate = np.convolve(binary_spikes, box, mode = 'same') return rate def power_spectrum(rate, dt): freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15) return freq, power def extract_stim_data(stimulus): ''' extracts all necessary metadata for each stimulus Parameters ---------- stimulus : Stimulus object or rlxnix.base.repro module The stimulus from which the data is needed. Returns ------- amplitude : float The relative signal amplitude in percent. df : float Distance of the stimulus to the current EODf. eodf : float Current EODf. stim_freq : float The total stimulus frequency (EODF+df). ''' # extract metadata # the stim.name adjusts the first key as it changes with every stimulus amplitude = stim.metadata[stim.name]['Contrast'][0][0] df = stim.metadata[stim.name]['DeltaF'][0][0] eodf = stim.metadata[stim.name]['EODf'][0][0] stim_freq = stim.metadata[stim.name]['Frequency'][0][0] return amplitude, df, eodf, stim_freq #find example data datafolder = "../data" example_file = datafolder + "/" + "2024-10-16-ad-invivo-1.nix" #load dataset dataset = rlx.Dataset(example_file) # find all sams sams = dataset.repro_runs('SAM') sam = sams[2] # our example sam potential,time = sam.trace_data("V-1") #membrane potential spike_times, _ = sam.trace_data('Spikes-1') #spike times df = sam.metadata['RePro-Info']['settings']['deltaf'][0][0] #find df in metadata amp = sam.metadata['RePro-Info']['settings']['contrast'][0][0] * 100 #find amplitude in metadata #figure for a quick plot fig = plt.figure(figsize = (5, 2.5)) ax = fig.add_subplot() ax.plot(time[time < 0.1], potential[time < 0.1]) # plot the membrane potential in 0.1s ax.scatter(spike_times[spike_times < 0.1], np.ones_like(spike_times[spike_times < 0.1]) * np.max(potential)) #plot teh spike times on top plt.show() plt.close() # get all the stimuli stims = sam.stimuli # empty list for the spike times spikes = [] #spikes2 = np.array(range(len(stims))) # loop over the stimuli for stim in stims: # get the spike times spike, _ = stim.trace_data('Spikes-1') # append the first 100ms to spikes spikes.append(spike[spike < 0.1]) # get stimulus duration duration = stim.duration ti = stim.trace_info("V-1") dt = ti.sampling_interval # get the stimulus interval bin_spikes = binary_spikes(spike, duration, dt) #binarize the spike_times print(len(bin_spikes)) pot,tim= stim.trace_data("V-1") #membrane potential rate = firing_rate(bin_spikes, dt = dt) print(np.mean(rate)) fig, [ax1, ax2] = plt.subplots(1, 2,layout = 'constrained') ax1.plot(tim,rate) ax1.set_ylim(0,600) ax1.set_xlim(0, 0.04) freq, power = power_spectrum(rate, dt) ax2.plot(freq,power) ax2.set_xlim(0,1000) # make an eventplot fig = plt.figure(figsize = (5, 3), layout = 'constrained') ax = fig.add_subplot() ax.eventplot(spikes, linelength = 0.8) ax.set_xlabel('time [ms]') ax.set_ylabel('loop no.')