import glob
import pathlib
import numpy as np
import matplotlib.pyplot as plt
import rlxnix as rlx
from IPython import embed
from scipy.signal import welch
import useful_functions as f

def binary_spikes(spike_times, duration, dt):
    """
    Converts the spike times to a binary representations

    Parameters
    ----------
    spike_times : np.array
        The spike times.
    duration : float
        The trial duration:
    dt : float
        The temporal resolution.

    Returns
    -------
    binary : np.array
        The binary representation of the spike train.

    """
    binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
    
    spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
    binary[spike_indices] = 1 # put the indices into binary
    return binary

def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
    box = np.ones(int(box_width // dt))
    box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
    rate = np.convolve(binary_spikes, box, mode = 'same') 
    return rate

def power_spectrum(rate, dt):
    freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
    return freq, power

def extract_stim_data(stimulus):
    '''
    extracts all necessary metadata for each stimulus

    Parameters
    ----------
    stimulus : Stimulus object or rlxnix.base.repro module
        The stimulus from which the data is needed.

    Returns
    -------
    amplitude : float
        The relative signal amplitude in percent.
    df : float
        Distance of the stimulus to the current EODf.
    eodf : float
        Current EODf.
    stim_freq : float
        The total stimulus frequency (EODF+df).
    amp_mod : float
        The current amplitude modulation.
    ny_freq : float
        The current nyquist frequency.

    '''
    # extract metadata
    # the stim.name adjusts the first key as it changes with every stimulus
    amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0] 
    df = stimulus.metadata[stimulus.name]['DeltaF'][0][0]
    eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0])
    stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0])
    # calculates the amplitude modulation
    amp_mod, ny_freq = AM(eodf, stim_freq)
    return amplitude, df, eodf, stim_freq, amp_mod, ny_freq

def AM(EODf, stimulus):
    """
    Calculates the Amplitude Modulation and Nyquist frequency

    Parameters
    ----------
    EODf : float or int
        The current EODf.
    stimulus : float or int
        The absolute frequency of the stimulus.

    Returns
    -------
    AM : float 
        The amplitude modulation resulting from the stimulus.
    nyquist : float
        The maximum frequency possible to resolve with the EODf.

    """
    nyquist = EODf * 0.5
    AM = np.mod(stimulus, nyquist)
    return AM, nyquist

def remove_poor(files):
    """
    Removes poor datasets from the set of files for analysis

    Parameters
    ----------
    files : list 
        list of files.

    Returns
    -------
    good_files : list
        list of files without the ones with the label poor.

    """
    # create list for good files
    good_files = []
    # loop over files
    for i in range(len(files)):
        # print(files[i])
        # load the file (takes some time)
        data = rlx.Dataset(files[i])
        # get the quality
        quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
        # check the quality
        if quality != "poor":
            # if its good or fair add it to the good files
            good_files.append(files[i])
    return good_files

def sam_data(sam):
    '''
    Gets metadata for each SAM

    Parameters
    ----------
    sam : ReproRun object
        The sam the metdata should be extracted from.

    Returns
    -------
    sam_amp : float
        amplitude in percent, relative to the fish amplitude.
    sam_am : float
        Amplitude modulation frequency.
    sam_df : float
        Difference from the stimulus to the current fish eodf.
    sam_eodf : float
        The current EODf.
    sam_nyquist : float
        The Nyquist frequency of the EODf.
    sam_stim : float
        The stimulus frequency.

    '''
    # create lists for the values we want
    amplitudes = []
    dfs = []
    eodfs = []
    stim_freqs = []
    amp_mods = []
    ny_freqs = []
    
    # get the stimuli
    stimuli = sam.stimuli
    
    # loop over the stimuli
    for stim in stimuli:
        amplitude, df, eodf, stim_freq, amp_mod, ny_freq = extract_stim_data(stim)
        amplitudes.append(amplitude)
        dfs.append(df)
        eodfs.append(eodf)
        stim_freqs.append(stim_freq)
        amp_mods.append(amp_mod)
        ny_freqs.append(ny_freq)
      
    # get the means
    sam_amp = np.mean(amplitudes)
    sam_am = np.mean(amp_mods)
    sam_df = np.mean(dfs)
    sam_eodf = np.mean(eodfs)
    sam_nyquist = np.mean(ny_freqs)
    sam_stim = np.mean(stim_freqs)
    return sam_amp, sam_am,sam_df, sam_eodf, sam_nyquist, sam_stim
    
#find example data
datafolder = "../../data"

example_file = datafolder + "/" + "2024-10-16-ad-invivo-1.nix"

data_files = glob.glob("../../data/*.nix")

#load dataset
dataset = rlx.Dataset(example_file)
# find all sams
sams = dataset.repro_runs('SAM')
sam = sams[2] # our example sam
potential,time = sam.trace_data("V-1") #membrane potential
spike_times, _ = sam.trace_data('Spikes-1') #spike times
df = sam.metadata['RePro-Info']['settings']['deltaf'][0][0] #find df in metadata
amp = sam.metadata['RePro-Info']['settings']['contrast'][0][0] * 100 #find amplitude in metadata

#figure for a quick plot
fig = plt.figure(figsize = (5, 2.5))
ax = fig.add_subplot()
ax.plot(time[time < 0.1], potential[time < 0.1]) # plot the membrane potential in 0.1s
ax.scatter(spike_times[spike_times < 0.1],
           np.ones_like(spike_times[spike_times < 0.1]) * np.max(potential)) #plot teh spike times on top
plt.show()
plt.close()

sam_amp, sam_am,sam_df, sam_eodf, sam_nyquist, sam_stim = f.sam_data(sam)
# # get all the stimuli
# stims = sam.stimuli
# # empty list for the spike times
# spikes = []
# #spikes2 = np.array(range(len(stims)))
# # loop over the stimuli
# for stim in stims:
#     # get the spike times
#     spike, _ = stim.trace_data('Spikes-1')
#     # append the first 100ms to spikes
#     spikes.append(spike[spike < 0.1])
#     # get stimulus duration
#     duration = stim.duration
#     ti = stim.trace_info("V-1")
#     dt = ti.sampling_interval # get the stimulus interval
#     bin_spikes = binary_spikes(spike, duration, dt) #binarize the spike_times
#     print(len(bin_spikes))
#     pot,tim= stim.trace_data("V-1") #membrane potential
#     rate = firing_rate(bin_spikes, dt = dt)
#     print(np.mean(rate))
#     fig, [ax1, ax2] = plt.subplots(1, 2,layout = 'constrained')
#     ax1.plot(tim,rate)
#     ax1.set_ylim(0,600)
#     ax1.set_xlim(0, 0.04)
#     freq, power = power_spectrum(rate, dt)
#     ax2.plot(freq,power)
#     ax2.set_xlim(0,1000)
#     plt.close()
#     if stim == stims[-1]:
#         amplitude, df, eodf, stim_freq = extract_stim_data(stim)
#         print(amplitude, df, eodf, stim_freq)

# # make an eventplot
# fig = plt.figure(figsize = (5, 3), layout = 'constrained')
# ax = fig.add_subplot()
# ax.eventplot(spikes, linelength = 0.8)
# ax.set_xlabel('time [ms]')
# ax.set_ylabel('loop no.')