import rlxnix as rlx import numpy as np import matplotlib.pyplot as plt import os from scipy.signal import welch # close all currently open figures plt.close('all') '''FUNCTIONS''' def vt_spikes(dataset): # get sams sams = dataset.repro_runs('SAM') sam = sams[2] # get potetial over time (vt curve) potential, time = sam.trace_data('V-1') # get spike times spike_times, _ = sam.trace_data('Spikes-1') # plot fig = plt.figure(figsize=(5, 2.5)) # alternative to ax = axs[0] ax = fig.add_subplot() # plot vt diagram ax.plot(time[time<0.1], potential[time<0.1]) # plot spikes into vt diagram, at max V ax.scatter(spike_times[spike_times<0.1], np.ones_like(spike_times[spike_times<0.1]) * np.max(potential)) plt.show() return sam def scatter_plot(sam1): ### plot scatter plot for one sam with all 3 stims # get stim count stim_count = sam1.stimulus_count # create colormap colors = plt.cm.prism(np.linspace(0, 1, stim_count)) # plot fig = plt.figure() ax = fig.add_subplot() stimuli = [] for i in range(stim_count): # get stim i from sam stim = sam.stimuli[i] potential_stim, time_stim = stim.trace_data('V-1') # get spike_times spike_times_stim, _ = stim.trace_data('Spikes-1') stimuli.append(spike_times_stim) ax.eventplot(stimuli, colors=colors) ax.set_xlabel('Spike Times [ms]') ax.set_ylabel('Loop #') ax.set_yticks(range(stim_count)) ax.set_title('Spikes of SAM 3') plt.show() return stim, stim_count, time_stim # create binary array with ones for spike times def binary_spikes(spike_times, duration , dt): '''Converts spike times to binary representation Params ------ spike_times: np.array spike times duration: float trial duration dt: float temporal resolution Returns -------- binary: np.array The binary representation of the spike times ''' binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round spike_indices = np.asarray(np.round(spike_times//dt), dtype=int) binary[spike_indices] = 1 return binary # function to plot psth def firing_rates(binary_spikes, box_width=0.01, dt=0.000025): box = np.ones(int(box_width // dt)) box /= np.sum(box * dt) # normalize box kernel w interal of 1 rate = np.convolve(binary_spikes, box, mode='same') return rate def power_spectrum(rate, dt): f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15) # algorithm makes rounding mistakes, we want to calc many spectra and take mean of those # nperseg: length of segments in # datapoints # noverlap: # datapoints that overlap in segments return f, p '''IMPORT DATA''' datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix') # extract metadata dataset = rlx.Dataset(example_file) ### plot # timeline of whole rec dataset.plot_timeline() # voltage and spikes of current sam sam = vt_spikes(dataset) # spike times of all loops stim, stim_count, time_stim = scatter_plot(sam) '''POWER SPECTRUM''' # define variables for binary spikes function spikes, _ = stim.trace_data('Spikes-1') ti = stim.trace_info('V-1') dt = ti.sampling_interval duration = stim.duration ### spectrum # vector with binary values for wholes length of stim binary = binary_spikes(spikes, duration, dt) # calculate firing rate rate = firing_rates(binary, 0.01, dt) # box width of 10 ms # plot psth or whatever # plt.plot(time_stim, rate) # plt.show() freq, power = power_spectrum(binary, dt) # plot power spectrum fig = plt.figure() ax = fig.add_subplot() ax.plot(freq, power) ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [1/Hz]') ax.set_xlim(0, 1000) plt.show() eodf = stim.metadata[stim.name]['EODF'][0][0] df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0] stimulus_freq = df + eodf ### TODO: # then loop over sams/dfs, all stims, intensities # when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben # we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency # clean up current code (define variables outside of functions, plot spectrum in function) # git # tuning curve over stim intensities or over delta f?