added function all_coming_toghether

This commit is contained in:
Diana 2024-10-23 12:00:05 +02:00
parent 86272cc18a
commit e8dc6d6aa1

View File

@ -6,6 +6,67 @@ import rlxnix as rlx
from IPython import embed
from scipy.signal import welch
def all_coming_together(freq_array, power_array, points_list, categories, num_harmonics_list, colors, delta=2.5, threshold=0.5):
"""
Process a list of points, calculating integrals, checking validity, and preparing harmonics for valid points.
Parameters
----------
freq_array : np.array
Array of frequencies corresponding to the power values.
power_array : np.array
Array of power spectral density values.
points_list : list
List of harmonic frequency points to process.
categories : list
List of corresponding categories for each point.
num_harmonics_list : list
List of the number of harmonics for each point.
colors : list
List of colors corresponding to each point's category.
delta : float, optional
Radius of the range for integration around each point (default is 2.5).
threshold : float, optional
Threshold value to compare integrals with local mean (default is 0.5).
Returns
-------
valid_points : list
A list of valid points with their harmonics.
color_mapping : dict
A dictionary mapping categories to corresponding colors.
category_harmonics : dict
A mapping of categories to their harmonic frequencies.
messages : list
A list of messages for each point, stating whether it was valid or not.
"""
valid_points = []
color_mapping = {}
category_harmonics = {}
messages = []
for i, point in enumerate(points_list):
category = categories[i]
num_harmonics = num_harmonics_list[i]
color = colors[i]
# Step 1: Calculate the integral for the point
integral, local_mean, _ = calculate_integral(freq_array, power_array, point, delta)
# Step 2: Check if the point is valid
valid = valid_integrals(integral, local_mean, point, threshold)
if valid:
# Step 3: Prepare harmonics if the point is valid
harmonics, color_map, category_harm = prepare_harmonic(point, category, num_harmonics, color)
valid_points.append((point, harmonics))
color_mapping.update(color_map)
category_harmonics.update(category_harm)
messages.append(f"The point {point} is valid.")
else:
messages.append(f"The point {point} is not valid.")
return valid_points, color_mapping, category_harmonics, messages
def AM(EODf, stimulus):
"""
Calculates the Amplitude Modulation and Nyquist frequency
@ -215,38 +276,36 @@ def power_spectrum(stimulus):
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
return freq, power
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
def prepare_harmonic(frequency, category, num_harmonics, color):
"""
Prepare harmonic frequencies and assign colors based on categories.
Prepare harmonic frequencies and assign color based on category for a single point.
Parameters
----------
frequencies : list
Base frequencies to generate harmonics.
categories : list
Corresponding categories for the base frequencies.
num_harmonics : list
Number of harmonics for each base frequency.
colors : list
List of colors corresponding to the categories.
frequency : float
Base frequency to generate harmonics.
category : str
Corresponding category for the base frequency.
num_harmonics : int
Number of harmonics for the base frequency.
color : str
Color corresponding to the category.
Returns
-------
points : list
A flat list of harmonic frequencies.
harmonics : list
A list of harmonic frequencies.
color_mapping : dict
A dictionary mapping each category to its corresponding color.
points_categories : dict
A mapping of categories to their harmonic frequencies.
A dictionary mapping the category to its corresponding color.
category_harmonics : dict
A mapping of the category to its harmonic frequencies.
"""
points_categories = {}
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
points = [p for harmonics in points_categories.values() for p in harmonics]
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
harmonics = [frequency * (i + 1) for i in range(num_harmonics)]
color_mapping = {category: color}
category_harmonics = {category: harmonics}
return points, color_mapping, points_categories
return harmonics, color_mapping, category_harmonics
def remove_poor(files):
"""