Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
c7436ad6b6
42
Experimenteller Aufbau.py
Normal file
42
Experimenteller Aufbau.py
Normal file
@ -0,0 +1,42 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Oct 18 11:07:01 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
### df relative to EODf outside of anesthesia
|
||||
# relative range: -400 zu 2000 Hz
|
||||
# Stim.zeit: 2s
|
||||
# 25 Hz Schritte
|
||||
# Intensität: 20%/ 10%
|
||||
# Daten die wir analysieren
|
||||
# relative firing rate über stim. frequenz mit baseline als horizontale linie
|
||||
# Firing rate
|
||||
|
||||
|
||||
|
||||
### To Dos:
|
||||
# Power spektrum anotieren
|
||||
# AM plot machen
|
||||
#
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Verworfen
|
||||
### Stimulus Intensity
|
||||
# relative range zur outside EODf: -600 bis 1000Hz
|
||||
# größere Schritte (50 Hz)
|
||||
# kürzere Stimulationszeiten
|
||||
# Stimulationsintensitäten als log Skala (20, 10, 5, 1, 0.5, 0.1 %)
|
||||
# Daten
|
||||
## extract power spectrum for phase locking
|
||||
# wo muss phase locking liegen
|
||||
# search window mit normierten Daten
|
||||
# signal-to-noise ratio: wo ist peak (z-score)
|
||||
# herausfinden, ob organ auf jeden peak einer bestimmten frequenz feuert
|
||||
# bei welcher stim. frequenz gibt es ein 1:1 firing
|
||||
# für jede zelle schauen, ab welcher Intensität eine Antwort bei einer
|
||||
# bestimmten frequenz zu sehen ist
|
161
analysis_1.py
Normal file
161
analysis_1.py
Normal file
@ -0,0 +1,161 @@
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
from scipy.signal import welch
|
||||
|
||||
# close all currently open figures
|
||||
plt.close('all')
|
||||
|
||||
'''FUNCTIONS'''
|
||||
def vt_spikes(dataset):
|
||||
# get sams
|
||||
sams = dataset.repro_runs('SAM')
|
||||
sam = sams[2]
|
||||
|
||||
# get potetial over time (vt curve)
|
||||
potential, time = sam.trace_data('V-1')
|
||||
|
||||
# get spike times
|
||||
spike_times, _ = sam.trace_data('Spikes-1')
|
||||
|
||||
# plot
|
||||
fig = plt.figure(figsize=(5, 2.5))
|
||||
# alternative to ax = axs[0]
|
||||
ax = fig.add_subplot()
|
||||
# plot vt diagram
|
||||
ax.plot(time[time<0.1], potential[time<0.1])
|
||||
# plot spikes into vt diagram, at max V
|
||||
ax.scatter(spike_times[spike_times<0.1], np.ones_like(spike_times[spike_times<0.1]) * np.max(potential))
|
||||
plt.show()
|
||||
|
||||
return sam
|
||||
|
||||
def scatter_plot(sam1):
|
||||
|
||||
### plot scatter plot for one sam with all 3 stims
|
||||
# get stim count
|
||||
stim_count = sam1.stimulus_count
|
||||
|
||||
# create colormap
|
||||
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
|
||||
|
||||
# plot
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
|
||||
stimuli = []
|
||||
for i in range(stim_count):
|
||||
# get stim i from sam
|
||||
stim = sam.stimuli[i]
|
||||
potential_stim, time_stim = stim.trace_data('V-1')
|
||||
# get spike_times
|
||||
spike_times_stim, _ = stim.trace_data('Spikes-1')
|
||||
stimuli.append(spike_times_stim)
|
||||
|
||||
ax.eventplot(stimuli, colors=colors)
|
||||
ax.set_xlabel('Spike Times [ms]')
|
||||
ax.set_ylabel('Loop #')
|
||||
ax.set_yticks(range(stim_count))
|
||||
ax.set_title('Spikes of SAM 3')
|
||||
plt.show()
|
||||
return stim, stim_count, time_stim
|
||||
|
||||
# create binary array with ones for spike times
|
||||
def binary_spikes(spike_times, duration , dt):
|
||||
'''Converts spike times to binary representation
|
||||
Params
|
||||
------
|
||||
spike_times: np.array
|
||||
spike times
|
||||
duration: float
|
||||
trial duration
|
||||
dt: float
|
||||
temporal resolution
|
||||
|
||||
Returns
|
||||
--------
|
||||
binary: np.array
|
||||
The binary representation of the spike times
|
||||
'''
|
||||
binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round
|
||||
spike_indices = np.asarray(np.round(spike_times//dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
# function to plot psth
|
||||
def firing_rates(binary_spikes, box_width=0.01, dt=0.000025):
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box * dt) # normalize box kernel w interal of 1
|
||||
rate = np.convolve(binary_spikes, box, mode='same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(rate, dt):
|
||||
f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15)
|
||||
# algorithm makes rounding mistakes, we want to calc many spectra and take mean of those
|
||||
# nperseg: length of segments in # datapoints
|
||||
# noverlap: # datapoints that overlap in segments
|
||||
return f, p
|
||||
|
||||
|
||||
|
||||
'''IMPORT DATA'''
|
||||
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
|
||||
|
||||
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
|
||||
|
||||
# extract metadata
|
||||
dataset = rlx.Dataset(example_file)
|
||||
|
||||
### plot
|
||||
# timeline of whole rec
|
||||
dataset.plot_timeline()
|
||||
|
||||
# voltage and spikes of current sam
|
||||
sam = vt_spikes(dataset)
|
||||
|
||||
# spike times of all loops
|
||||
stim, stim_count, time_stim = scatter_plot(sam)
|
||||
|
||||
|
||||
'''POWER SPECTRUM'''
|
||||
# define variables for binary spikes function
|
||||
spikes, _ = stim.trace_data('Spikes-1')
|
||||
ti = stim.trace_info('V-1')
|
||||
dt = ti.sampling_interval
|
||||
duration = stim.duration
|
||||
|
||||
### spectrum
|
||||
# vector with binary values for wholes length of stim
|
||||
binary = binary_spikes(spikes, duration, dt)
|
||||
|
||||
# calculate firing rate
|
||||
rate = firing_rates(binary, 0.01, dt) # box width of 10 ms
|
||||
|
||||
# plot psth or whatever
|
||||
# plt.plot(time_stim, rate)
|
||||
# plt.show()
|
||||
|
||||
freq, power = power_spectrum(binary, dt)
|
||||
|
||||
# plot power spectrum
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
ax.plot(freq, power)
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [1/Hz]')
|
||||
ax.set_xlim(0, 1000)
|
||||
plt.show()
|
||||
|
||||
eodf = stim.metadata[stim.name]['EODF'][0][0]
|
||||
df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0]
|
||||
stimulus_freq = df + eodf
|
||||
|
||||
|
||||
### TODO:
|
||||
# then loop over sams/dfs, all stims, intensities
|
||||
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
||||
# clean up current code (define variables outside of functions, plot spectrum in function)
|
||||
# git
|
||||
# tuning curve over stim intensities or over delta f?
|
141
code/GP_Code.py
141
code/GP_Code.py
@ -1,10 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Oct 17 09:23:10 2024
|
||||
Created on Tue Oct 22 11:43:41 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
import glob
|
||||
import os
|
||||
@ -101,11 +101,12 @@ def prepare_harmonics(frequencies, categories, num_harmonics, colors):
|
||||
return points, color_mapping, points_categories
|
||||
|
||||
|
||||
def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories):
|
||||
"""Create a figure of the power spectrum with integrals highlighted around specified points.
|
||||
def plot_power_spectrum_with_integrals(frequency, power, points, delta):
|
||||
"""
|
||||
Create a figure of the power spectrum and calculate integrals around specified points.
|
||||
|
||||
This function creates a plot of the power spectrum and shades areas around
|
||||
specified harmonic points to indicate the calculated integrals.
|
||||
This function generates the plot of the power spectrum and calculates integrals
|
||||
around specified harmonic points, but it does not color the regions or add vertical lines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -117,37 +118,121 @@ def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_ma
|
||||
A list of harmonic frequencies to highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
color_mapping : dict
|
||||
A mapping of point categories to colors.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integrals : list
|
||||
List of calculated integrals for each point.
|
||||
local_means : list
|
||||
List of local mean values (adjacent integrals).
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object.
|
||||
The created figure object with the power plot.
|
||||
ax : matplotlib.axes.Axes
|
||||
The axes object for further modifications.
|
||||
"""
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power)
|
||||
ax.plot(frequency, power) # Plot power spectrum
|
||||
|
||||
integrals = []
|
||||
local_means = []
|
||||
|
||||
for point in points:
|
||||
# Define indices for the integration window
|
||||
indices = (frequency >= point - delta) & (frequency <= point + delta)
|
||||
# Calculate integral around the point
|
||||
integral = np.trapz(power[indices], frequency[indices])
|
||||
integrals.append(integral)
|
||||
|
||||
# Get color based on point category
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
|
||||
# Calculate adjacent region integrals for local mean
|
||||
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
|
||||
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], frequency[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], frequency[right_indices])
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
local_means.append(local_mean)
|
||||
|
||||
ax.set_xlim([0, 1200]) # Set x-axis limit
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with marked Integrals')
|
||||
ax.legend()
|
||||
ax.set_title('Power Spectrum with Integrals (Uncolored)')
|
||||
|
||||
return integrals, local_means, fig, ax
|
||||
|
||||
|
||||
def highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig_orig, ax_orig):
|
||||
"""
|
||||
Create a new figure by highlighting integrals that exceed the threshold.
|
||||
|
||||
This function generates a new figure with colored shading around points where the integrals exceed
|
||||
the local mean by a given threshold and adds vertical lines at the boundaries of adjacent regions.
|
||||
It leaves the original figure unchanged.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
points : list
|
||||
A list of harmonic frequencies to highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
integrals : list
|
||||
List of calculated integrals for each point.
|
||||
local_means : list
|
||||
List of local mean values (adjacent integrals).
|
||||
color_mapping : dict
|
||||
A mapping of point categories to colors.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
fig_orig : matplotlib.figure.Figure
|
||||
The original figure object (remains unchanged).
|
||||
ax_orig : matplotlib.axes.Axes
|
||||
The original axes object (remains unchanged).
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig_new : matplotlib.figure.Figure
|
||||
The new figure object with color highlights and vertical lines.
|
||||
"""
|
||||
|
||||
# Create a new figure based on the original power spectrum
|
||||
fig_new, ax_new = plt.subplots()
|
||||
ax_new.plot(frequency, power) # Plot the same power spectrum
|
||||
|
||||
# Loop through each point and check if the integral exceeds the threshold
|
||||
for i, point in enumerate(points):
|
||||
exceeds = integrals[i] > (local_means[i] * threshold)
|
||||
|
||||
if exceeds:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax_new.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integrals[i]:.5e}")
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
ax_new.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
ax_new.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
|
||||
# Update plot legend and return the new figure
|
||||
ax_new.set_xlim([0, 1200])
|
||||
ax_new.set_xlabel('Frequency (Hz)')
|
||||
ax_new.set_ylabel('Power')
|
||||
ax_new.set_title('Power Spectrum with Highlighted Integrals')
|
||||
ax_new.legend()
|
||||
|
||||
return fig_new
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
@ -184,9 +269,13 @@ categories = ["AM", "EODf", "Stimulus frequency"]
|
||||
num_harmonics = [4, 2, 2]
|
||||
colors = ["green", "orange", "red"]
|
||||
delta = 2.5
|
||||
threshold = 10
|
||||
|
||||
|
||||
### Peaks im Powerspektrum finden ###
|
||||
###
|
||||
points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
|
||||
fig = plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories)
|
||||
plt.show()
|
||||
|
||||
# First, create the power spectrum plot with integrals (without coloring)
|
||||
integrals, local_means, fig1, ax1 = plot_power_spectrum_with_integrals(frequency, power, points, delta)
|
||||
|
||||
# Then, create a new separate figure where integrals exceeding the threshold are highlighted
|
||||
fig2 = highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig1, ax1)
|
@ -151,4 +151,8 @@ power_spectrum_plot(freq, power)
|
||||
### TODO:
|
||||
# then loop over sams/dfs, all stims, intensities
|
||||
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
||||
|
||||
'''TEST- HI'''
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user