Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
a90f35b8b9
75
code/test.py
75
code/test.py
@ -60,21 +60,81 @@ def extract_stim_data(stimulus):
|
||||
Current EODf.
|
||||
stim_freq : float
|
||||
The total stimulus frequency (EODF+df).
|
||||
amp_mod : float
|
||||
The current amplitude modulation.
|
||||
ny_freq : float
|
||||
The current nyquist frequency.
|
||||
|
||||
'''
|
||||
# extract metadata
|
||||
# the stim.name adjusts the first key as it changes with every stimulus
|
||||
amplitude = stim.metadata[stim.name]['Contrast'][0][0]
|
||||
df = stim.metadata[stim.name]['DeltaF'][0][0]
|
||||
eodf = stim.metadata[stim.name]['EODf'][0][0]
|
||||
stim_freq = stim.metadata[stim.name]['Frequency'][0][0]
|
||||
return amplitude, df, eodf, stim_freq
|
||||
eodf = round(stim.metadata[stim.name]['EODf'][0][0])
|
||||
stim_freq = round(stim.metadata[stim.name]['Frequency'][0][0])
|
||||
# calculates the amplitude modulation
|
||||
amp_mod, ny_freq = AM(eodf, stim_freq)
|
||||
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
|
||||
|
||||
def AM(EODf, stimulus):
|
||||
"""
|
||||
Calculates the Amplitude Modulation and Nyquist frequency
|
||||
|
||||
Parameters
|
||||
----------
|
||||
EODf : float or int
|
||||
The current EODf.
|
||||
stimulus : float or int
|
||||
The absolute frequency of the stimulus.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AM : float
|
||||
The amplitude modulation resulting from the stimulus.
|
||||
nyquist : float
|
||||
The maximum frequency possible to resolve with the EODf.
|
||||
|
||||
"""
|
||||
nyquist = EODf * 0.5
|
||||
AM = np.mod(stimulus, nyquist)
|
||||
return AM, nyquist
|
||||
|
||||
def remove_poor(files):
|
||||
"""
|
||||
Removes poor datasets from the set of files for analysis
|
||||
|
||||
Parameters
|
||||
----------
|
||||
files : list
|
||||
list of files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
good_files : list
|
||||
list of files without the ones with the label poor.
|
||||
|
||||
"""
|
||||
# create list for good files
|
||||
good_files = []
|
||||
# loop over files
|
||||
for i in range(len(files)):
|
||||
# print(files[i])
|
||||
# load the file (takes some time)
|
||||
data = rlx.Dataset(files[i])
|
||||
# get the quality
|
||||
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
|
||||
# check the quality
|
||||
if quality != "poor":
|
||||
# if its good or fair add it to the good files
|
||||
good_files.append(files[i])
|
||||
return good_files
|
||||
|
||||
#find example data
|
||||
datafolder = "../data"
|
||||
datafolder = "../../data"
|
||||
|
||||
example_file = datafolder + "/" + "2024-10-16-ad-invivo-1.nix"
|
||||
example_file = datafolder + "/" + "2024-10-16-ah-invivo-1.nix"
|
||||
|
||||
data_files = glob.glob("../../data/*.nix")
|
||||
|
||||
#load dataset
|
||||
dataset = rlx.Dataset(example_file)
|
||||
@ -121,6 +181,10 @@ for stim in stims:
|
||||
freq, power = power_spectrum(rate, dt)
|
||||
ax2.plot(freq,power)
|
||||
ax2.set_xlim(0,1000)
|
||||
plt.close()
|
||||
if stim == stims[-1]:
|
||||
amplitude, df, eodf, stim_freq = extract_stim_data(stim)
|
||||
print(amplitude, df, eodf, stim_freq)
|
||||
|
||||
# make an eventplot
|
||||
fig = plt.figure(figsize = (5, 3), layout = 'constrained')
|
||||
@ -128,4 +192,3 @@ ax = fig.add_subplot()
|
||||
ax.eventplot(spikes, linelength = 0.8)
|
||||
ax.set_xlabel('time [ms]')
|
||||
ax.set_ylabel('loop no.')
|
||||
plt.show()
|
173
code/useful_functions.py
Normal file
173
code/useful_functions.py
Normal file
@ -0,0 +1,173 @@
|
||||
import glob
|
||||
import pathlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import rlxnix as rlx
|
||||
from IPython import embed
|
||||
from scipy.signal import welch
|
||||
|
||||
def AM(EODf, stimulus):
|
||||
"""
|
||||
Calculates the Amplitude Modulation and Nyquist frequency
|
||||
|
||||
Parameters
|
||||
----------
|
||||
EODf : float or int
|
||||
The current EODf.
|
||||
stimulus : float or int
|
||||
The absolute frequency of the stimulus.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AM : float
|
||||
The amplitude modulation resulting from the stimulus.
|
||||
nyquist : float
|
||||
The maximum frequency possible to resolve with the EODf.
|
||||
|
||||
"""
|
||||
nyquist = EODf * 0.5
|
||||
AM = np.mod(stimulus, nyquist)
|
||||
return AM, nyquist
|
||||
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
"""
|
||||
Converts the spike times to a binary representations
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration:
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike train.
|
||||
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
|
||||
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
|
||||
binary[spike_indices] = 1 # put the indices into binary
|
||||
return binary
|
||||
|
||||
def extract_stim_data(stimulus):
|
||||
'''
|
||||
extracts all necessary metadata for each stimulus
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stimulus : Stimulus object or rlxnix.base.repro module
|
||||
The stimulus from which the data is needed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
amplitude : float
|
||||
The relative signal amplitude in percent.
|
||||
df : float
|
||||
Distance of the stimulus to the current EODf.
|
||||
eodf : float
|
||||
Current EODf.
|
||||
stim_freq : float
|
||||
The total stimulus frequency (EODF+df).
|
||||
amp_mod : float
|
||||
The current amplitude modulation.
|
||||
ny_freq : float
|
||||
The current nyquist frequency.
|
||||
|
||||
'''
|
||||
# extract metadata
|
||||
# the stim.name adjusts the first key as it changes with every stimulus
|
||||
amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0]
|
||||
df = stimulus.metadata[stimulus.name]['DeltaF'][0][0]
|
||||
eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0])
|
||||
stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0])
|
||||
# calculates the amplitude modulation
|
||||
amp_mod, ny_freq = AM(eodf, stim_freq)
|
||||
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
|
||||
|
||||
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
|
||||
'''
|
||||
Calculates the firing rate from binary spikes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
binary_spikes : np.array
|
||||
The binary representation of the spike train.
|
||||
dt : float, optional
|
||||
Time difference between two datapoints. The default is 0.000025.
|
||||
box_width : float, optional
|
||||
Time window on which the rate should be computed on. The default is 0.01.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rate : np.array
|
||||
Array of firing rates.
|
||||
|
||||
'''
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
|
||||
rate = np.convolve(binary_spikes, box, mode = 'same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(spike_times, duration, dt):
|
||||
'''
|
||||
Computes a power spectrum based on the spike times
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration:
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
freq : np.array
|
||||
All the frequencies of the power spectrum.
|
||||
power : np.array
|
||||
Power of the frequencies calculated.
|
||||
|
||||
'''
|
||||
# binarizes spikes
|
||||
binary = binary_spikes(spike_times, duration, dt)
|
||||
# computes firing rates
|
||||
rate = firing_rate(binary, dt = dt)
|
||||
# creates power spectrum
|
||||
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||
return freq, power
|
||||
|
||||
def remove_poor(files):
|
||||
"""
|
||||
Removes poor datasets from the set of files for analysis
|
||||
|
||||
Parameters
|
||||
----------
|
||||
files : list
|
||||
list of files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
good_files : list
|
||||
list of files without the ones with the label poor.
|
||||
|
||||
"""
|
||||
# create list for good files
|
||||
good_files = []
|
||||
# loop over files
|
||||
for i in range(len(files)):
|
||||
# print(files[i])
|
||||
# load the file (takes some time)
|
||||
data = rlx.Dataset(files[i])
|
||||
# get the quality
|
||||
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
|
||||
# check the quality
|
||||
if quality != "poor":
|
||||
# if its good or fair add it to the good files
|
||||
good_files.append(files[i])
|
||||
return good_files
|
Loading…
Reference in New Issue
Block a user