This commit is contained in:
Diana 2024-10-22 11:52:21 +02:00
commit a90f35b8b9
2 changed files with 242 additions and 6 deletions

View File

@ -60,21 +60,81 @@ def extract_stim_data(stimulus):
Current EODf. Current EODf.
stim_freq : float stim_freq : float
The total stimulus frequency (EODF+df). The total stimulus frequency (EODF+df).
amp_mod : float
The current amplitude modulation.
ny_freq : float
The current nyquist frequency.
''' '''
# extract metadata # extract metadata
# the stim.name adjusts the first key as it changes with every stimulus # the stim.name adjusts the first key as it changes with every stimulus
amplitude = stim.metadata[stim.name]['Contrast'][0][0] amplitude = stim.metadata[stim.name]['Contrast'][0][0]
df = stim.metadata[stim.name]['DeltaF'][0][0] df = stim.metadata[stim.name]['DeltaF'][0][0]
eodf = stim.metadata[stim.name]['EODf'][0][0] eodf = round(stim.metadata[stim.name]['EODf'][0][0])
stim_freq = stim.metadata[stim.name]['Frequency'][0][0] stim_freq = round(stim.metadata[stim.name]['Frequency'][0][0])
return amplitude, df, eodf, stim_freq # calculates the amplitude modulation
amp_mod, ny_freq = AM(eodf, stim_freq)
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
def AM(EODf, stimulus):
"""
Calculates the Amplitude Modulation and Nyquist frequency
Parameters
----------
EODf : float or int
The current EODf.
stimulus : float or int
The absolute frequency of the stimulus.
Returns
-------
AM : float
The amplitude modulation resulting from the stimulus.
nyquist : float
The maximum frequency possible to resolve with the EODf.
"""
nyquist = EODf * 0.5
AM = np.mod(stimulus, nyquist)
return AM, nyquist
def remove_poor(files):
"""
Removes poor datasets from the set of files for analysis
Parameters
----------
files : list
list of files.
Returns
-------
good_files : list
list of files without the ones with the label poor.
"""
# create list for good files
good_files = []
# loop over files
for i in range(len(files)):
# print(files[i])
# load the file (takes some time)
data = rlx.Dataset(files[i])
# get the quality
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
# check the quality
if quality != "poor":
# if its good or fair add it to the good files
good_files.append(files[i])
return good_files
#find example data #find example data
datafolder = "../data" datafolder = "../../data"
example_file = datafolder + "/" + "2024-10-16-ah-invivo-1.nix"
example_file = datafolder + "/" + "2024-10-16-ad-invivo-1.nix" data_files = glob.glob("../../data/*.nix")
#load dataset #load dataset
dataset = rlx.Dataset(example_file) dataset = rlx.Dataset(example_file)
@ -121,6 +181,10 @@ for stim in stims:
freq, power = power_spectrum(rate, dt) freq, power = power_spectrum(rate, dt)
ax2.plot(freq,power) ax2.plot(freq,power)
ax2.set_xlim(0,1000) ax2.set_xlim(0,1000)
plt.close()
if stim == stims[-1]:
amplitude, df, eodf, stim_freq = extract_stim_data(stim)
print(amplitude, df, eodf, stim_freq)
# make an eventplot # make an eventplot
fig = plt.figure(figsize = (5, 3), layout = 'constrained') fig = plt.figure(figsize = (5, 3), layout = 'constrained')
@ -128,4 +192,3 @@ ax = fig.add_subplot()
ax.eventplot(spikes, linelength = 0.8) ax.eventplot(spikes, linelength = 0.8)
ax.set_xlabel('time [ms]') ax.set_xlabel('time [ms]')
ax.set_ylabel('loop no.') ax.set_ylabel('loop no.')
plt.show()

173
code/useful_functions.py Normal file
View File

@ -0,0 +1,173 @@
import glob
import pathlib
import numpy as np
import matplotlib.pyplot as plt
import rlxnix as rlx
from IPython import embed
from scipy.signal import welch
def AM(EODf, stimulus):
"""
Calculates the Amplitude Modulation and Nyquist frequency
Parameters
----------
EODf : float or int
The current EODf.
stimulus : float or int
The absolute frequency of the stimulus.
Returns
-------
AM : float
The amplitude modulation resulting from the stimulus.
nyquist : float
The maximum frequency possible to resolve with the EODf.
"""
nyquist = EODf * 0.5
AM = np.mod(stimulus, nyquist)
return AM, nyquist
def binary_spikes(spike_times, duration, dt):
"""
Converts the spike times to a binary representations
Parameters
----------
spike_times : np.array
The spike times.
duration : float
The trial duration:
dt : float
The temporal resolution.
Returns
-------
binary : np.array
The binary representation of the spike train.
"""
binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
binary[spike_indices] = 1 # put the indices into binary
return binary
def extract_stim_data(stimulus):
'''
extracts all necessary metadata for each stimulus
Parameters
----------
stimulus : Stimulus object or rlxnix.base.repro module
The stimulus from which the data is needed.
Returns
-------
amplitude : float
The relative signal amplitude in percent.
df : float
Distance of the stimulus to the current EODf.
eodf : float
Current EODf.
stim_freq : float
The total stimulus frequency (EODF+df).
amp_mod : float
The current amplitude modulation.
ny_freq : float
The current nyquist frequency.
'''
# extract metadata
# the stim.name adjusts the first key as it changes with every stimulus
amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0]
df = stimulus.metadata[stimulus.name]['DeltaF'][0][0]
eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0])
stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0])
# calculates the amplitude modulation
amp_mod, ny_freq = AM(eodf, stim_freq)
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
'''
Calculates the firing rate from binary spikes
Parameters
----------
binary_spikes : np.array
The binary representation of the spike train.
dt : float, optional
Time difference between two datapoints. The default is 0.000025.
box_width : float, optional
Time window on which the rate should be computed on. The default is 0.01.
Returns
-------
rate : np.array
Array of firing rates.
'''
box = np.ones(int(box_width // dt))
box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
rate = np.convolve(binary_spikes, box, mode = 'same')
return rate
def power_spectrum(spike_times, duration, dt):
'''
Computes a power spectrum based on the spike times
Parameters
----------
spike_times : np.array
The spike times.
duration : float
The trial duration:
dt : float
The temporal resolution.
Returns
-------
freq : np.array
All the frequencies of the power spectrum.
power : np.array
Power of the frequencies calculated.
'''
# binarizes spikes
binary = binary_spikes(spike_times, duration, dt)
# computes firing rates
rate = firing_rate(binary, dt = dt)
# creates power spectrum
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
return freq, power
def remove_poor(files):
"""
Removes poor datasets from the set of files for analysis
Parameters
----------
files : list
list of files.
Returns
-------
good_files : list
list of files without the ones with the label poor.
"""
# create list for good files
good_files = []
# loop over files
for i in range(len(files)):
# print(files[i])
# load the file (takes some time)
data = rlx.Dataset(files[i])
# get the quality
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
# check the quality
if quality != "poor":
# if its good or fair add it to the good files
good_files.append(files[i])
return good_files