Added find_nearest_peak function
This commit is contained in:
parent
2e2e79f5fe
commit
904fa5cf30
@ -3,6 +3,7 @@ import rlxnix as rlx
|
||||
from scipy.signal import welch
|
||||
from scipy import signal
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.signal import find_peaks
|
||||
|
||||
def all_coming_together(freq_array, power_array, points_list, categories, num_harmonics_list, colors, delta=2.5, threshold=0.5):
|
||||
# Initialize dictionaries and lists
|
||||
@ -124,42 +125,44 @@ def calculate_integral(freq, power, point, delta = 2.5):
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
return integral, local_mean, p_power
|
||||
|
||||
def calculate_integral_2(freq, power, point, delta = 2.5):
|
||||
|
||||
def calculate_integral_2(freq, power, peak_freq, delta=2.5):
|
||||
"""
|
||||
Calculate the integral around a single specified point.
|
||||
Calculate the integral around a specified peak frequency and the local mean.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
freq : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
point : float
|
||||
The harmonic frequency at which to calculate the integral.
|
||||
peak_freq : float
|
||||
The frequency of the peak around which to calculate the integral.
|
||||
delta : float, optional
|
||||
Radius of the range for integration around the point. The default is 2.5.
|
||||
Radius of the range for integration around the peak. The default is 2.5.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
The calculated integral around the peak frequency.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
p_power : float
|
||||
The local maxiumum power.
|
||||
"""
|
||||
indices = (freq >= point - delta) & (freq <= point + delta)
|
||||
# Calculate integral around the nearest peak
|
||||
indices = (freq >= peak_freq - delta) & (freq <= peak_freq + delta)
|
||||
integral = np.trapz(power[indices], freq[indices])
|
||||
|
||||
left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
|
||||
right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], freq[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], freq[right_indices])
|
||||
|
||||
|
||||
left_indices = (freq >= peak_freq - 5 * delta) & (freq < peak_freq - delta)
|
||||
right_indices = (freq > peak_freq + delta) & (freq <= peak_freq + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], freq[left_indices]) if np.any(left_indices) else 0
|
||||
r_integral = np.trapz(power[right_indices], freq[right_indices]) if np.any(right_indices) else 0
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
|
||||
return integral, local_mean
|
||||
|
||||
|
||||
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
|
||||
'''
|
||||
sorts the sams into three contrasts
|
||||
@ -266,6 +269,41 @@ def find_AM(eodf, nyquist, stimulus_frequency):
|
||||
AM = t2[np.argmin(np.abs(x_values - stimulus_frequency))]
|
||||
return AM
|
||||
|
||||
def find_nearest_peak(freq, power, point, threshold=0.5e-6, peak_search_range=10):
|
||||
"""
|
||||
Find the nearest peak within a specified range around a given point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
freq : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
point : float
|
||||
The harmonic frequency for which to find the nearest peak.
|
||||
peak_search_range : float, optional
|
||||
Range in Hz to search for peaks around the specified point. The default is 30.
|
||||
|
||||
Returns
|
||||
-------
|
||||
peak_freq : float
|
||||
The frequency of the nearest peak within the specified range.
|
||||
"""
|
||||
# Define the range for peak searching
|
||||
search_indices = (freq >= point - peak_search_range) & (freq <= point + peak_search_range)
|
||||
|
||||
# Find peaks in the specified range
|
||||
peaks, _ = find_peaks(power[search_indices], height=threshold)
|
||||
|
||||
# Adjust peak indices to match the original frequency array
|
||||
peaks_freq = freq[search_indices][peaks]
|
||||
|
||||
# Find the nearest peak to the specified point
|
||||
nearest_peak_index = np.argmin(np.abs(peaks_freq - point))
|
||||
peak_freq = peaks_freq[nearest_peak_index]
|
||||
|
||||
return peak_freq
|
||||
|
||||
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
|
||||
'''
|
||||
Calculates the firing rate from binary spikes
|
||||
|
Loading…
Reference in New Issue
Block a user