diff --git a/code/plot_functions.py b/code/plot_functions.py index 63be604..1f84e19 100644 --- a/code/plot_functions.py +++ b/code/plot_functions.py @@ -72,7 +72,7 @@ functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Proje sys.path.append(functions_path) import useful_functions as u -def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta = 2.5): +def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta=2.5): """ Plot the power spectrum and highlight integrals that exceed the threshold. @@ -82,12 +82,10 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c An array of frequencies corresponding to the power values. power : np.array An array of power spectral density values. - exceeding_points : list - A list of harmonic frequencies that exceed the threshold. + points : list + A list of harmonic frequencies to check and highlight. delta : float Half-width of the range for integration around each point. - threshold : float - Threshold value to compare integrals with local mean. color_mapping : dict A dictionary mapping each category to its color. points_categories : dict @@ -111,10 +109,16 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c if valid: # Define color based on the category of the point color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray') + # Shade the region around the point where the integral was calculated ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz') - print(f"Integral around {point:.2f} Hz: {integral:.5e}") - + + # Print out point and color + print(f"Integral around {point:.2f} Hz: {integral:.5e}, Color: {color}") + + # Annotate the plot with the point and its color + ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center') + # Define left and right boundaries of adjacent regions left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]] right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]] @@ -132,3 +136,4 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c return fig + diff --git a/code/useful_functions.py b/code/useful_functions.py index a2ff40b..edea81b 100644 --- a/code/useful_functions.py +++ b/code/useful_functions.py @@ -32,7 +32,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha Returns ------- valid_points : list - A list of valid points with their harmonics. + A continuous list of harmonics for all valid points. color_mapping : dict A dictionary mapping categories to corresponding colors. category_harmonics : dict @@ -40,7 +40,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha messages : list A list of messages for each point, stating whether it was valid or not. """ - valid_points = [] + valid_points = [] # A continuous list of harmonics for valid points color_mapping = {} category_harmonics = {} messages = [] @@ -58,7 +58,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha if valid: # Step 3: Prepare harmonics if the point is valid harmonics, color_map, category_harm = prepare_harmonic(point, category, num_harmonics, color) - valid_points.append((point, harmonics)) + valid_points.extend(harmonics) # Use extend() to append harmonics in a continuous manner color_mapping.update(color_map) category_harmonics.update(category_harm) messages.append(f"The point {point} is valid.") @@ -67,6 +67,8 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha return valid_points, color_mapping, category_harmonics, messages + + def AM(EODf, stimulus): """ Calculates the Amplitude Modulation and Nyquist frequency @@ -425,8 +427,7 @@ def spike_times(stim): dt = ti.sampling_interval return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function - -def valid_integrals(integral, local_mean, point, threshold = 0.3): +def valid_integrals(integral, local_mean, point, threshold = 0.1): """ Check if the integral exceeds the threshold compared to the local mean and provide feedback on whether the given point is valid or not.