This commit is contained in:
Diana 2024-10-24 13:50:13 +02:00
commit 6faef3c004

View File

@ -154,6 +154,59 @@ def calculate_integral(freq, power, point, delta = 2.5):
local_mean = np.mean([l_integral, r_integral])
return integral, local_mean, p_power
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
'''
sorts the sams into three contrasts
Parameters
----------
sams : ReproRuns
The sams to be sorted.
con_1 : int, optional
the first contrast. The default is 20.
con_2 : int, optional
the second contrast. The default is 10.
con_3 : int, optional
the third contrast. The default is 5.
stim_count : int, optional
the amount of stimuli per sam in a good sam. The default is 3.
stim_dur : int, optional
The stimulus duration. The default is 2.
Returns
-------
contrast_sams : dictionary
A dictionary containing all sams sorted to the contrasts.
'''
# dictionary for the contrasts
contrast_sams = {con_1 : [],
con_2 : [],
con_3 : []}
# loop over all sams
for sam in sams:
# get the contrast
avg_dur, contrast, _, _, _, _, _ = sam_data(sam)
# check for valid trails
if np.isnan(contrast):
continue
elif sam.stimulus_count < stim_count: #aborted trials
continue
elif avg_dur < (stim_dur * 0.8):
continue
else:
contrast = int(contrast) # get integer of contrast
# sort them accordingly
if contrast == con_1:
contrast_sams[con_1].append(sam)
elif contrast == con_2:
contrast_sams[con_2].append(sam)
elif contrast == con_3:
contrast_sams[con_3].append(sam)
else:
continue
return contrast_sams
def extract_stim_data(stimulus):
'''
extracts all necessary metadata for each stimulus