added calculate_integral_2 without p_power
This commit is contained in:
		
							parent
							
								
									a9378771ac
								
							
						
					
					
						commit
						51ab5f668b
					
				@ -47,7 +47,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
 | 
				
			|||||||
        color = colors[i]
 | 
					        color = colors[i]
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # Step 1: Calculate the integral for the point
 | 
					        # Step 1: Calculate the integral for the point
 | 
				
			||||||
        integral, local_mean, _ = calculate_integral(freq_array, power_array, point, delta)
 | 
					        integral, local_mean = calculate_integral_2(freq_array, power_array, point, delta)
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # Step 2: Check if the point is valid
 | 
					        # Step 2: Check if the point is valid
 | 
				
			||||||
        valid = valid_integrals(integral, local_mean, point, threshold)
 | 
					        valid = valid_integrals(integral, local_mean, point, threshold)
 | 
				
			||||||
@ -150,6 +150,42 @@ def calculate_integral(freq, power, point, delta = 2.5):
 | 
				
			|||||||
    local_mean = np.mean([l_integral, r_integral])
 | 
					    local_mean = np.mean([l_integral, r_integral])
 | 
				
			||||||
    return integral, local_mean, p_power
 | 
					    return integral, local_mean, p_power
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def calculate_integral_2(freq, power, point, delta = 2.5):   
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Calculate the integral around a single specified point.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Parameters
 | 
				
			||||||
 | 
					    ----------
 | 
				
			||||||
 | 
					    frequency : np.array
 | 
				
			||||||
 | 
					        An array of frequencies corresponding to the power values.
 | 
				
			||||||
 | 
					    power : np.array
 | 
				
			||||||
 | 
					        An array of power spectral density values.
 | 
				
			||||||
 | 
					    point : float
 | 
				
			||||||
 | 
					        The harmonic frequency at which to calculate the integral.
 | 
				
			||||||
 | 
					    delta : float, optional
 | 
				
			||||||
 | 
					        Radius of the range for integration around the point. The default is 2.5.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns
 | 
				
			||||||
 | 
					    -------
 | 
				
			||||||
 | 
					    integral : float
 | 
				
			||||||
 | 
					        The calculated integral around the point.
 | 
				
			||||||
 | 
					    local_mean : float
 | 
				
			||||||
 | 
					        The local mean value (adjacent integrals).
 | 
				
			||||||
 | 
					    p_power : float
 | 
				
			||||||
 | 
					        The local maxiumum power.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    indices = (freq >= point - delta) & (freq <= point + delta)
 | 
				
			||||||
 | 
					    integral = np.trapz(power[indices], freq[indices])
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
 | 
				
			||||||
 | 
					    right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
 | 
				
			||||||
 | 
					           
 | 
				
			||||||
 | 
					    l_integral = np.trapz(power[left_indices], freq[left_indices])
 | 
				
			||||||
 | 
					    r_integral = np.trapz(power[right_indices], freq[right_indices])
 | 
				
			||||||
 | 
					           
 | 
				
			||||||
 | 
					    local_mean = np.mean([l_integral, r_integral])
 | 
				
			||||||
 | 
					    return integral, local_mean
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
 | 
					def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
 | 
				
			||||||
    '''
 | 
					    '''
 | 
				
			||||||
    sorts the sams into three contrasts
 | 
					    sorts the sams into three contrasts
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user