added calculate_integral_2 without p_power

This commit is contained in:
Diana 2024-10-24 15:46:14 +02:00
parent a9378771ac
commit 51ab5f668b

View File

@ -47,7 +47,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
color = colors[i]
# Step 1: Calculate the integral for the point
integral, local_mean, _ = calculate_integral(freq_array, power_array, point, delta)
integral, local_mean = calculate_integral_2(freq_array, power_array, point, delta)
# Step 2: Check if the point is valid
valid = valid_integrals(integral, local_mean, point, threshold)
@ -150,6 +150,42 @@ def calculate_integral(freq, power, point, delta = 2.5):
local_mean = np.mean([l_integral, r_integral])
return integral, local_mean, p_power
def calculate_integral_2(freq, power, point, delta = 2.5):
"""
Calculate the integral around a single specified point.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
point : float
The harmonic frequency at which to calculate the integral.
delta : float, optional
Radius of the range for integration around the point. The default is 2.5.
Returns
-------
integral : float
The calculated integral around the point.
local_mean : float
The local mean value (adjacent integrals).
p_power : float
The local maxiumum power.
"""
indices = (freq >= point - delta) & (freq <= point + delta)
integral = np.trapz(power[indices], freq[indices])
left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
l_integral = np.trapz(power[left_indices], freq[left_indices])
r_integral = np.trapz(power[right_indices], freq[right_indices])
local_mean = np.mean([l_integral, r_integral])
return integral, local_mean
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
'''
sorts the sams into three contrasts